Electronic Supplementary Information

Influence of perhalophenyl groups in the TADF mechanism of diphosphino gold(I) complexes

Inés Soldevilla,^a Aimara García-Camacho,^a Rinat T. Nasibullin,^b M. Elena Olmos,^a Miguel Monge,^a Dage Sundholm,^c Rashid R. Valiev,^d José M. López-de-Luzuriaga^{*a} and María Rodríguez-Castillo^{*a}

a Departamento de Química. Centro de Investigación en Síntesis Química (CISQ). Universidad de la Rioja.
 Complejo Científico Tecnológico 26004-Logroño, SPAIN.
 E-mail: josemaria.lopez@unirioja.es
 E-mail: maria.rodriguez@unirioja.es

b Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, RUSSIA
 c Department of Chemistry. Faculty of Science, University of Helsinki
 P.O. Box 55, (A.I. Virtasen aukio 1) FIN-00014, FINLAND.

d Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia.

Table of contents

I.	Sy tet	nthesis of $[AuR(tht)]$ (R = o -C ₆ BrF ₄ , p -C ₆ BrF ₄ , o -C ₆ F ₄ I, p -C ₆ F ₄ I; tht = trahydrothiophene)	3				
II.	Ch	Characterization of complexes 2-5					
	1.	IR spectra	10				
	2.	TGA spectra of complexes1-5	12				
	3.	¹ H NMR spectra (300 MHz, 298K)	13				
	4.	¹⁹ F NMR spectra (282 MHz, 298K)	15				
	5.	³¹ P{ ¹ H} NMR spectra (122 MHz, 298K)	17				
	6.	Single crystals X-ray diffraction analyses	19				
III.	Optical Properties						
	1.	UV-Vis absorption spectra in solid state	22				
	2.	Temperature-dependent emission spectra for complexes 2-5	24				
	3.	Lifetimes at RT and at 77K	26				
	4.	TADF studies	28				
IV.	Computational Methods						
	1.	Results of DFT optimization of complexes $\textbf{2-5}$ in the S_0 state	31				
	2.	xyz coordinates for models 2-5 in the S_0 state	31				
	3.	Results of DFT optimized complexes 2-5 in the T_1 state	37				
	4.	xyz coordinates for models 2-5 in the T_1 state	37				
	5.	Coordination environment of the gold(I) centre for complexes 2	-5				
		in the ground state S_0 and in the lowest triplet excited state T_1	43				
	6.	Computational calculation of the energy difference between					
		S_0 and T_1	44				
	7.	Frontier HOMO and LUMO for complexes 3-5	44				
	8.	Transition density calculations	45				

I. Synthesis of [AuR(tht)] (R = $o-C_6BrF_4$, $p-C_6BrF_4$, $o-C_6F_4I$, $p-C_6F_4I$; tht = tetrahydrothiophene)

To a solution of 5 mmol (R=o-C₆F₄I, p-C₆F₄I) or 8 mmol (R = o-C₆BrF₄, p-C6BrF₄) of LiR in 100ml of diethyl ether at -78 °C was added the equimolecular amount of ClAu(tht). The reaction was stirred for 3 hours at -78 °C and after that, the mixture was allowed to warm to room temperature around 1 or 2 hours. The solid fraction was eliminated by filtration through celite and the filtrate was concentrate ca. 5ml giving rise to the precipitation of [AuR(tht)] (R = o-C₆BrF₄, p-C₆BrF₄, o-C₆F₄I, p-C₆F₄I) which was isolated by filtration. Another fraction of this complex can be obtained by addition of n-hexane to the diethyl ether solution and subsequent filtration. The complex [AuR(tht)] (R = o-C₆BrF₄, p-C₆BrF₄, o-C₆F₄I, p-C₆F₄I) is isolated as a white solid.

Experimental Data for:

[Au(o-C₆BrF₄)(tht)]. ¹H (298 K, toluene-*d*₈): δ 2.42 (m, 4H, H₁), 1.28 (m, 4H, H₂). ¹⁹F (298, toluene-*d*₈): δ -115.41 (dd, 4F, F₁) (³J(F₁-F₂) = 30.4 Hz, ⁵J(F₁-F₄) = 12.3 Hz), δ - 156.66 (ddd, 4F, F₂) (³J(F₂-F₁) = 30.4 Hz, ⁴J(F₂-F₃) = 19.2 Hz), ⁴J(F₂-F₄) = 1.6 Hz), δ -157.45 (dd, 4F, F₃) (³J(F₃-F₄) = 21.3 Hz, ⁴J(F₃-F₂) = 19.2 Hz), δ -126.43 (ddd, 4F, F₄) (³J(F₄-F₃) = 21.3 Hz, ⁵J(F₄-F₁) = 13.9 Hz), ⁴J(F₄-F₂) = 1.6 Hz). MS(ESI-): *m/z* 652.83 [Au(o-C₆BrF₄)₂]⁻. ESI(+) *m/z* 373.02 [Au(C₄H₈S)]⁺. ATR-IR: v 1614, 1596, 1082, 824 cm⁻¹ (Au-(*o*-C₆BrF₄)).

[Au(*p*-C₆BrF₄)(tht)]. ¹H (298 K, toluene-*d*₈): δ 2.36 (m, 4H, H₁), 1.21 (m, 4H, H₂). ¹⁹F (298, toluene-*d*₈): δ -114.55 (m, 4F, F₁), δ -134.61 (m, 4F, F₂). MS(ESI-): *m/z* 652.84 [Au(*p*-C₆BrF₄)₂]⁻. ESI(+) *m/z* 373.02 [Au(C₄H₈S)]⁺. ATR-IR: v 1578, 1532, 1075, 764 cm⁻¹ (Au-(*p*-C₆BrF₄)).

[Au(o-C₆F₄I)(tht)]. ¹H (298 K, toluene-*d*₈): δ 2.46 (m, 4H, H₁), 1.32 (m, 4H, H₂). ¹⁹F (298, toluene-*d*₈): δ -116.14 (dd, 4F, F₁) (³J(F₁-F₂) = 30.8 Hz, ⁵J(F₁-F₄) = 12.8 Hz), δ -155.53 (ddd, 4F, F₂) (³J(F₂-F₁) = 30.8 Hz, ⁴J(F₂-F₃) = 19.5 Hz), ⁴J(F₂-F₄) = 2.0 Hz), δ -157.37 (dd, 4F, F₃) (³J(F₃-F₄) = 22.4 Hz, ⁴J(F₃-F₂) = 19.5 Hz), δ -111.87 (ddd, 4F, F₄) (³J(F₄-F₃) = 22.4 Hz, ⁵J(F₄-F₁) = 12.8 Hz), ⁴J(F₄-F₂) = 2.0 Hz). MS(ESI-): *m*/*z* 746.81 [Au(*o*-C₆F₄I)₂]⁻. ESI(+) *m*/*z* 373.03 [Au(C₄H₈S)]⁺. ATR-IR: v 1578, 1606, 1589, 1083, 812 cm⁻¹ (Au-(*o*-C₆F₄I)))

[Au(*p***-C₆F₄I)(tht)]**. ¹H (298 K, toluene-*d*₈): δ 2.37 (m, 4H, H₁), 1.22 (m, 4H, H₂). ¹⁹F (298, toluene-*d*₈): δ -114.25 (m, 4F, F₁), δ -122.21 (m, 4F, F₂). MS(ESI-): *m*/*z* 746.82 [Au(*p*-C₆F₄I)₂]⁻. ESI(+) *m*/*z* 373.02 [Au(C₄H₈S)]⁺. ATR-IR: v 1640, 1565, 1092, 874 cm⁻¹ (Au-(*p*-C₆F₄I)).

Figure S1. FT-IR spectrum of complex [Au(o-C₆BrF₄)(tht)].

Figure S2. FT-IR spectrum of complex $[Au(p-C_6BrF_4)(tht)]$.

Figure S3. FT-IR spectrum of complex [Au(*o*-C₆F₄I)(tht)].

Figure S4. FT-IR spectrum of complex [Au(*p*-C₆F₄I)(tht)].

Figure S5. ¹H NMR spectrum of complex [Au(o-C₆BrF₄)(tht)] in toluene-d8

Figure S6. ¹⁹F NMR spectrum of complex [Au(o-C₆BrF₄)(tht)] in toluene-d8

Figure S7. ¹H NMR spectrum of complex [Au(*p*-C₆BrF₄)(tht)] in toluene-d8

-98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 ft (ppm)

Figure S8. ¹⁹F NMR spectrum of complex [Au(*p*-C₆BrF₄)(tht)] in toluene-d8

Figure S9. ¹H NMR spectrum of complex [Au(*o*-C₆F₄I)(tht)] in toluene-d8

Figure S10. ¹⁹F NMR spectrum of complex [Au(o-C₆F₄I)(tht)] in toluene-d8

Figure S11. ¹H NMR spectrum of complex [Au(*p*-C₆F₄I)(tht)] in toluene-d8

Figure S12. ¹⁹F NMR spectrum of complex $[Au(p-C_6F_4I)(tht)]$ in toluene-d8

II. Characterization of complexes 2-5

1. IR spectra

Figure S13. FT-IR spectrum of complex 2.

Figure S14. FT-IR spectrum of complex 3.

Figure S15. FT-IR spectrum of complex 4.

Figure S16. FT-IR spectrum of complex 5.

2 TGA spectra of complexes 1-5

Figure S17. TGA spectra of complexes 1-5.

3 ¹H NMR spectra (300 MHz, 298K)

(* Solvent residual peaks)

4 ¹⁹F NMR spectra (282 MHz, 298K)

-112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 f1 (ppm)

Figure S22. ¹⁹F NMR spectrum of complex 2 in toluene-d8

110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 f1 (ppm)

Figure S23. ¹⁹F NMR spectrum of complex 3 in toluene-d8

Figure S24. ¹⁹F NMR spectrum of complex 4 in toluene-d8

Figure S25. ¹⁹F NMR spectrum of complex 5 in toluene-d8

5 ³¹P{¹H} NMR spectra (122 MHz, 298K)

Figure S26. ³¹P{¹H} NMR spectrum of complex 2 in toluene-d8

Figure S28. ³¹P{¹H} NMR spectrum of complex 4 in toluene-d8

Figure S29. $^{31}\text{P}\{^{1}\text{H}\}$ NMR spectrum of complex 5 in toluene-d8

6 Single crystals X-ray diffraction analyses

	1	2
Chemical Formula	$C_{36}H_{24}AuF_5P_2$	$C_{36}H_{24}AuBrF_4P_2$
Crystal habit	Yellow prism	Colourless prism
Crystal size/mm	0.061 x 0.053 x 0.023	0.106 x 0.059 x 0.057
Crystal system	Triclinic	Triclinic
Space group	P -1	P -1
$a/{ m \AA}$	9.3057(7)	9.5296(7)
$b/{ m \AA}$	13.6833(10)	13.7464(9)
$c/{ m \AA}$	14.0638(9)	14.1548(9)
α/°	117.397(2)	65.383(2)
β/°	96.580(2)	71.256(2)
$\gamma/^{\circ}$	102.952(3)	75.683(2)
$V/Å^3$	1499.62(19)	1582.40(19)
Ζ	2	2
D _c /g cm ⁻³	1.795	1.829
М	810.46	871.37
F(000)	788	840
T/°C	-173	26
2θmax/°	68	55
μ (Mo-K α)/mm ⁻¹	5.069	6.061
No. refl. Measured	46032	46803
No. unique refl.	10486	7517
$R_{ m int}$	0.0839	0.0430
$R[F>2\sigma(F)]^{[a]}$	0.0501	0.0456
$wR[F^2, \text{ all refl.}]^{[b]}$	0.1031	0.1314
No. of refl. Used $[F>2\sigma(F)]$	10486	7517
No. of parameters	397	391
No. of restrains	87	0
S [c]	1.142	1.057
Max. residual electron density/e·Å ⁻³	2.075	1.996

Table S1. Data collection and structure refinement details for 1 and 2

^a R: $(F) = \sum ||F_0| - |F_c|| / \sum |F_0|$.

^b w*R*: $(F^2) = [\sum \{w(F_o^2 - F_c^2)^2\} / \sum \{w(F_o^2)^2\}]^{0.5}$; $w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$, where $P = [F_o^2 + 2F_c^2] / 3$ and a and b are constants adjusted by the program.

^c $S = \left[\sum \left\{w(F_o^2 - F_c^2)^2\right\}/(n-p)\right]^{0.5}$, where *n* is the number of data and *p* the number of parameters

Figure S30. Crystal structure of complex **1** showing the polymeric double chain formed *via* C-H…F hydrogen bonds and F…F contacts. Colour code: C, grey; H, white; Au, yellow; F, green; P, orange.

Figure S31. Crystal structure of complex **2** showing the polymeric double chain formed *via* C-H…F and C-H…Br hydrogen. Colour code: C, grey; H, white; Au, yellow; Br, brown; F, green; P, orange.

 Table S2. Selected hydrogen bond lengths (Å) and angles (°) for 1.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(D-H…A)
C(8)-H(8)F(1)#1	0.95	2.575	3.342(7)	138.0
C(33)-H(33)F(3)#2	0.95	2.435	3.286(7)	149.0

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1; #2 x,y+1,z+1

 Table S3. Selected hydrogen bond lengths (Å) and angles (°) for 2.

D-H···A	d(D-H)	d(H…A)	d(D…A)	<(D-H…A)
C(8)-H(8)Br(1)#1	0.93	3.11	3.902(7)	143.6
C(33)-H(33)F(2)#2	0.93	2.545	3.347(7)	144.7

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z+2; #2 x,y,z+1

III Optical properties

1. UV-Vis absorption spectra in solid state

Figure S32. UV-Vis absorption spectra in solid state for complexes $[Au(o-C_6BrF_4)(dppBz)]$ (2) (black), dppBz (blue) and $[Au(o-C_6BrF_4)(tht)]$ (red).

Figure S33. UV-Vis absorption spectra in solid state for complexes $[Au(p-C_6BrF_4)(dppBz)]$ (3) (black), dppBz (blue) and $[Au(p-C_6BrF_4)(tht)]$ (red).

Figure S34. UV-Vis absorption spectra in solid state for complexes $[Au(o-C_6F_4I)(dppBz)]$ (4) (black), dppBz (blue) and $[Au(o-C_6F_4I)(tht)]$ (red).

Figure S35. UV-Vis absorption spectra in solid state for complexes $[Au(p-C_6F_4I)(dppBz)]$ (5) (black), dppBz (blue) and $[Au(p-C_6F_4I)(tht)]$ (red).

2. Temperature-dependent emission spectra for complexes 2-5

Figure S36. Left: Temperature-dependent change of emission energies and intensities for complex **2** in the 77-300K range. **Right**: (up) Excitation and emission spectra in solid state for complex **2** at room temperature (black) and 77K (red); (bottom) Emission intensities *vs* temperature.

Figure S37. Left: Temperature-dependent change of emission energies and intensities for complex **3** in the 77-300K range. **Right**: (up) Excitation and emission spectra in solid state for complex **3** at room temperature (black) and 77K (red); (bottom) Emission intensities *vs* temperature.

Figure S38. Left: Temperature-dependent change of emission energies and intensities for complex **4** in the 77-300K range. **Right**: (up) Excitation and emission spectra in solid state for complex **4** at room temperature (black) and 77K (red); (bottom) Emission intensities *vs* temperature.

Figure S39. Left: Temperature-dependent change of emission energies and intensities for complex **5** in the 77-300K range. **Right**: (up) Excitation and emission spectra in solid state for complex **5** at room temperature (black) and 77K (red); (bottom) Emission intensities *vs* temperature.

3. Lifetimes at RT and at 77K

Figure S40. Lifetime decay for complex 2 at room temperature: τ = 22.60 ± 0.27 µs (χ^2 = 1.13) (left) and at 77K: τ = 70.85 ± 0.41 µs (χ^2 = 1.16) (right).

Complex 3:

Figure S41. Lifetime decay for complex 3 at room temperature: $\tau = 9,92 \pm 0.30 \ \mu s \ (\chi^2 = 1.14)$ (left) and at 77K: $\tau = 32.76 \pm 1.72 \ \mu s \ (\chi^2 = 1.06)$ (right).

Figure S42. Lifetime decay for complex 4 at room temperature: $\tau = 9.63 \pm 0.75 \ \mu s \ (\chi^2 = 0.76)$ (left) and at 77K: $\tau = 37.37 \pm 0.42 \ \mu s \ (\chi^2 = 1.56)$ (right).

Complex 5:

Figure S43. Lifetime decay for complex 5 at room temperature: $\tau = 9.42 \pm 0.28 \ \mu s \ (\chi^2 = 1.05)$ (left) and at 77K: $\tau = 34.40 \pm 0.65 \ \mu s \ (\chi^2 = 1.16)$ (right).

4. TADF studies

Figure S44. Temperature dependence of the emission decay time for complexes 2 (left) and 3 (right). The solid red lines represent the fit of the experimental data according to Eq. 1 (main text). The fit parameters are showed in the attached tables.

Figure S45. Temperature dependence of the emission decay time for complexes **4** (left) and **5** (right). The solid red lines represent the fit of the experimental data according to Eq. 1 (main text). The fit parameters are showed in the attached tables.

Figure S46. Left: Fractional emission intensities (simulation results) stemming from TADF (red) and direct phosphorescence (black) as a function of temperature calculated on the basis of the experimental data and Equations 3 and 4 (main text) for complex 1; Right: Schematic energy level diagram and decay times of 1 in powder.

Figure S47. Left: Fractional emission intensities (simulation results) stemming from TADF (red) and direct phosphorescence (black) as a function of temperature calculated on the basis of the experimental data from figure 6 (main text) and Equations. 3 and 4 (main text) for complex **3**; Right: Schematic energy level diagram and decay times of **3** in powder.

Figure S48. Left: Fractional emission intensities (simulation results) stemming from TADF (red) and direct phosphorescence (black) as a function of temperature calculated on the basis of the experimental data from figure 7 (main text) and Equations. 3 and 4 (main text) for complex 4; Right: Schematic energy level diagram and decay times of **4** in powder.

Figure S49. Left: Fractional emission intensities (simulation results) stemming from TADF (red) and direct phosphorescence (black) as a function of temperature calculated on the basis of the experimental data from figure 7 (main text) and Equations. 3 and 4 (main text) for complex 5; Right: Schematic energy level diagram and decay times of 5 in powder.

IV Computational Methods

1. Results of DFT optimization of complexes 2-5 in the S_0 state

Figure S50. Model Systems of complexes 2-5 in the ground state S_0

2. xyz c	oordinates	for	model 2-5	in	the	S ₀ state
----------	------------	-----	------------------	----	-----	----------------------

68			
Model	2 S0		
P	12.289851	7.541646	7.851496
С	9.975455	5.437777	5.149464
С	10.904249	6.299120	5.718317
Н	11.441986	6.987658	5.082463
С	11.156348	6.298898	7.093152
С	13.744827	6.518553	8.281974
С	12.872402	8.480744	6.387079
С	14.060233	5.312245	7.655218
Н	13.421466	4.931838	6.869035
С	14.012367	8.162887	5.647238
Н	14.611412	7.304902	5.920775
С	12.126448	9.606459	6.026015
Н	11.255245	9.877574	6.611160
С	13.626061	10.049288	4.196808

H	13.920297	10.656830	3.350304
С	12.492937	10.379088	4.932376
Н	11.902495	11.245881	4.663101
С	14.386855	8.944414	4.560966
Н	15.275702	8.688201	3.997633
С	15.177066	4.587475	8.046500
Н	15.403847	3.646512	7.561718
С	14.563247	6.978189	9.316160
H	14.308331	7.895159	9.831936
С	15.992391	5.060319	9.068274
H	16.857677	4.488176	9.378913
C	15.684381	6.257488	9.703052
н	16 302147	6 622996	10 513076
P	10 754237	5 256478	9 695885
C	10 441769	5 385261	7 899079
C	9 502746	1 532215	7 3163/9
U U	9 0/1596	3 951359	7 942037
п С	0.265050	J.0JIJJ0 4 552102	5 040226
C	9.203930	4.555192	10 266011
	9.213030	4.332034 E 412007	10.300911
	0.121030	5.412007	10.001922
H Q	8.221119	0.453822	10.222679
C	12.004186	3.945139	9.862459
C	6.918132	4.938643	11.001539
H	6.076207	5.611384	11.102160
С	9.094434	3.221461	10./605/6
H	9.938805	2.552177	10.675064
С	12.045995	2.849274	8.998033
H	11.345248	2.778280	8.177068
С	12.932429	4.037303	10.899074
Н	12.917908	4.898945	11.553403
С	7.888176	2.752242	11.270255
Н	7.803528	1.717685	11.577788
С	13.914308	1.947521	10.219022
H	14.660279	1.174299	10.353553
С	12.996018	1.854586	9.178460
Н	13.024745	1.010046	8.501591
С	6.799223	3.606078	11.386760
Н	5.861897	3.238895	11.784911
С	13.882700	3.040362	11.075504
Н	14.606022	3.128355	11.875728
Au	11.332915	7.219030	10.763606
С	11.836561	8.891085	11.893959
С	11.120473	10.067258	11.749417
С	12.897825	8.931078	12.795480
С	11.416055	11.229239	12.446441
С	12.479422	11.230919	13.335393
С	13.225971	10.074995	13.509574
F	14.250677	10.107607	14.372101
F	10.696477	12.345270	12.276003
F	10.073976	10.123872	10.895586
- Н	9.805960	5.465816	4.080330
 H	8.530935	3.885791	5.518245
 F	12 782698	12 339458	14 019670
- Br	13 992149	7 387392	13 100705
	エン・フラムエキラ	1.501592	TO.TOO100

Model 3 S0

HOUET	J 50		
Au	- 6.701641	2.489392	3.547797
P	8.596732	2,909499	4.796297
- D	7 523007	5 380281	2 864591
C	1 027/02	1 071011	2.001001
	4.92/402	1.9/1014	2.000433
С	9./544/3	4.154115	4.1255/3
С	11.11/4/1	4.019350	4.396626
Н	11.466884	3.159749	4.952349
С	7.508223	6.930927	1.884682
С	3.723357	1.978444	3.288048
С	4.856039	1.615375	1.271207
C	8 212008	3 481633	6 480053
C	6 944637	3 221623	7 001600
	6.205124	2.725560	6 206470
п	0.203124	2.725566	0.3004/0
C	12.0334/5	4.961694	3.951/30
Н	13.08644/	4.835955	4.168508
С	9.292620	5.257561	3.374801
С	3.667342	1.280118	0.639948
С	6.705037	5.880456	4.423837
С	2.513080	1.649613	2.697465
С	9.620623	1.419692	5.007322
С	5.347752	5.576419	4.557763
н	4 835613	5 056693	3 758270
C	2 175715	1 29/370	1 35/838
C	7 725026	6 000270	0 510/11
	7.733620	0.009379	0.310411
Н	7.905663	5.827759	0.083/8/
С	9.939836	0.691787	3.85/5/9
H	9.567089	1.019485	2.894746
С	8.830761	4.549377	8.554068
Н	9.564242	5.073762	9.153414
С	7.362807	6.515910	5.477580
Н	8.418625	6.738141	5.396390
С	10.074055	0.975116	6.247643
Н	9.820604	1.521922	7.144979
C	11 584835	6 056470	3 226409
ч	12 285007	6 803476	2 873875
C	Q 151526	1 155196	7 263097
	10 120250	4.100100	6 961062
п	10.129336	4.303400	0.001003
C	7.255157	8.196645	2.416033
Н	/.060810	8.308204	3.4/3969
С	10.719531	-0.450912	3.947388
H	10.961564	-1.008086	3.051500
С	10.849094	-0.176618	6.334885
Н	11.194187	-0.517134	7.302830
С	7.568373	4.279800	9.072021
Н	7.316689	4.594829	10.076892
С	11.176153	-0.887682	5.187914
Н	11.777621	-1.785074	5.258583
С	7.496366	9.188048	0.231310
н	7 489539	10 062144	-0 407307
C	6 676277	- 0.002144	6 627201
	7 201600	U.U404JU 7 207710	U.UJ/J04 7 /EDEC1
п	7.2U10U0	1.321/12	1.43336L
	/./41285	7.930200	-0.309365
Н	7.922951	/.820202	-1.3/1092
С	6.626825	3.618683	8.293884

Н	5.636994	3.421674	8.684373
С	10.232835	6.196806	2.941987
Н	9.902033	7.050728	2.368926
С	7.247430	9.316774	1.593115
Н	7.046909	10.292470	2.018164
С	5.324082	6.550440	6.756749
Н	4.793157	6.799681	7.666852
С	4.659125	5.915512	5.714261
Н	3.610167	5.664802	5.806483
F	3.689822	2.323407	4.599019
F	1.386352	1.676705	3.422608
F	3.671256	0.944403	-0.656892
F	5.978630	1.583999	0.519294
Br	0.843931	0.843520	0.520841

Model 4 S0

Ρ	-12.322208	7.527527	7.886340
С	9.950973	5.496013	5.179625
С	10.895841	6.337677	5.751314
Н	11.432354	7.032156	5.120978
С	11.165502	6.310565	7.122420
С	13.770992	6.481838	8.280948
С	12.897660	8.486487	6.432312
С	14.060942	5.278363	7.636891
Н	13.404714	4.914529	6.857379
С	14.023386	8.168411	5.671052
Η	14.613632	7.296554	5.918605
С	12.163209	9.630085	6.105388
Η	11.304295	9.901138	6.708396
С	13.645603	10.090980	4.266623
Η	13.937771	10.712547	3.429684
С	12.526840	10.420860	5.023828
Н	11.945734	11.301635	4.781114
С	14.395126	8.967923	4.596993
Н	15.273067	8.711725	4.016877
С	15.174204	4.535169	8.003040
Н	15.380725	3.596369	7.505275
С	14.611780	6.920268	9.306179
Η	14.377069	7.834917	9.835731
С	16.012140	4.987128	9.015944
Н	16.875546	4.401404	9.305709
С	15.730160	6.182034	9.666826
Н	16.366207	6.532387	10.469415
Ρ	10.776433	5.235822	9.714751
С	10.451322	5.390872	7.921957
С	9.496786	4.557185	7.336323
Η	8.935508	3.872129	7.957265
С	9.243205	4.604236	5.973008
С	9.236404	4.537122	10.387830
С	8.148502	5.402462	10.535683
Н	8.253263	6.445860	10.264780
С	12.015447	3.912023	9.857351
С	6.944729	4.932792	11.038079
Η	6.107891	5.610215	11.148862

С	9.108323	3.203650	10.771457
H	9.947848	2.529665	10.676101
С	12.040230	2.825156	8.981130
Н	11.331536	2.768703	8.165804
С	12.953949	3.986511	10.885604
H	12.952601	4.841195	11.549088
С	7.901732	2.738073	11.283666
Н	7.811953	1.701641	11.583238
С	13.913090	1.896695	10.174607
Н	14.654097	1.116272	10.293962
С	12.983763	1.821215	9.142481
Н	12.998874	0.982963	8.457395
С	6.819040	3.597918	11.412928
Н	5.881473	3.233598	11.813056
С	13.897840	2.980509	11.042822
Н	14.629205	3.054384	11.837214
Au	11.358722	7.198593	10.782781
С	11.822546	8.902966	11.882175
С	11.095319	10.061775	11.666037
С	12.854066	8.993621	12.817389
С	11.351880	11.255803	12.322587
С	12.383057	11.309919	13.246775
С	13.137117	10.171913	13.493383
F	14.128327	10.259647	14.392688
F	10.624600	12.352630	12.078786
F	10.076907	10.070007	10.776090
Н	9.768038	5.544539	4.113476
Н	8.495920	3.952018	5.539851
F	12.646521	12.450903	13.893975
I	14.075559	7.320313	13.262888

Model 5 S0

Þ	- 12 270696	7 551790	7 844683
	10 010050	7.JJ17J0	F 10000
C	10.012353	5.411558	5.123304
С	10.923677	6.286558	5.699530
Н	11.459679	6.979720	5.067308
С	11.160003	6.294146	7.077157
С	13.729654	6.544230	8.298209
С	12.861728	8.489863	6.383170
С	14.061333	5.337077	7.681770
Н	13.434546	4.947217	6.890579
С	14.013007	8.179172	5.657989
Н	14.617498	7.328883	5.943407
С	12.108194	9.605386	6.006573
Н	11.227453	9.870804	6.579958
С	13.623434	10.052490	4.191433
Н	13.920631	10.657572	3.344195
С	12.478827	10.375087	4.912265
Н	11.882401	11.233899	4.630798
С	14.391418	8.957797	4.570996
Н	15.288897	8.707186	4.018958
С	15.179668	4.623215	8.089025
Н	15.419291	3.681730	7.611411
С	14.533517	7.016481	9.338609
Н	14.267293	7.935176	9.845423

С	15.980009	5.107810	9.116876
Н	16.846607	4.544466	9.439718
С	15.656141	6.306433	9.741426
Н	16.263897	6.681859	10.554717
Р	10.736895	5.259406	9.680004
С	10.448324	5.374297	7.878100
C	9.526653	4.507453	7.287855
H	8.966637	3.822144	7,909700
C	9.305391	4.520387	5.918183
C	9.191144	4.554584	10.332751
C	8.090393	5.409511	10.440224
H	8.188267	6.448736	10.151019
C	11,991409	3.955511	9.871724
C	6.881664	4.935271	10.926250
H	6.034998	5.604793	11.006027
C	9.070403	3,227317	10.739747
н	9 919577	2 561701	10 675239
C	12 045748	2 852494	9 016928
н	11 351305	2 771019	8 191718
C	12 913308	4 061502	10 913135
н	12 890933	4 929319	11 559558
C	7 858690	2 757381	11 235673
н	7 774707	1 725988	11 553830
C	13 911841	1 971972	10 256189
н	14 661926	1 204715	10 401387
C	13 000524	1 864977	9 210922
н	13 038121	1 015077	8 541253
C	6 763574	3 606584	11 324997
H	5.822006	3,239003	11.712636
C	13 868473	3 071590	11 103494
н	14 586305	3 170343	11 907261
л Д11	11 300888	7 225686	10 754452
C	11.804992	8.881388	11.897652
C	11.032958	10.029336	11,930255
C	12 959485	8 917896	12 659413
C	11 376771	11 150601	12 670947
C	12 542139	11 156852	13 427493
C	13 336842	10 017690	13 414839
् म	14 471648	9 974055	14 129613
- ਸ	10 578688	12 228419	12 649898
- ਸ	9 887731	10 091984	11 213989
- H	9.854661	5.433817	4.052227
н	8 583525	3 842504	5 481270
 F	13 784740	7 841711	12 686609
- т	13 085711	12 833630	14 550317
-		12.000000	T 1.000011

3. Results of DFT optimization of complexes $\mathbf{2-5}$ in the T_1 state

Figure S51. Model Systems of complexes 2-5 in the lowest triplet excited state T₁

68			
Model	2 T1		
Au	12.108502258	6.865840068	10.593343919
P	12.936854781	6.859436473	8.202881044
С	10.907539397	4.831357147	5.340395650
С	11.713023890	5.731404873	5.989134218
Н	12.269848534	6.454767952	5.404175881
С	11.820603328	5.763799718	7.403726855
С	14.679211948	6.301853127	8.103562454
С	12.866696763	8.500042343	7.429156335
С	15.024028220	5.244818815	7.256349970
Н	14.264304525	4.781082260	6.641149466
С	14.010821003	9.222978249	7.073993341
Н	14.992721131	8.794243520	7.216142977
С	11.607190462	9.077734160	7.220437975
Н	10.714667831	8.525503378	7.483505241
С	12.640764833	11.056891325	6.317307367
Н	12.553786339	12.046648592	5.886571613
С	11.497467739	10.344435192	6.668149576

4.	xyz coordinates	for model 2-5	in the T ₁ state
----	-----------------	---------------	-----------------------------

Н	10.517521276	10.778002977	6.513622157
С	13.894406643	10.491677412	6.519578253
Н	14.788389205	11.036751188	6.242870179
С	16.335204589	4.787270178	7.204978554
Н	16.591900577	3.973399628	6.538046624
С	15.663242226	6.867476332	8.921789245
н	15 408055346	7 659299945	9 612750018
C	17 310929917	5 365985821	8 009047254
ч	18 330433581	5 001977021	7 973473647
C	16 071375683	6 404728957	8 870050802
с u	17 722394322	6 9/9/61/90	0.0700J0002 0.511772500
п	11 102006150	1 010255100	9.511772500
r C	11 041401117	4.012333100	9.941070903
	10 210520520	4.709000794	0.1/3/044/3
	10.218538538	3.891819181	7.468318479
H	9.610641506	3.1891/9038	8.02/3585/0
C	10.140581447	3.88/050644	6.0941/6320
C	9.41/9190/8	4.59/333234	10.609089959
С	8.590629328	5.717225738	10.751016699
H	8.976432770	6.703905453	10.526081522
С	12.048907512	3.373202929	10.578216398
С	7.281320204	5.575706448	11.186093104
Н	6.656168797	6.452879345	11.297225486
С	8.904585121	3.333882033	10.918279404
Н	9.530679638	2.455691962	10.829323179
С	12.617154695	2.441500407	9.710601522
Н	12.469246178	2.545463834	8.643590721
С	12.256480098	3.239929274	11.955243938
Н	11.830177663	3.963943024	12.640212827
С	7.589723630	3.195411142	11.350896421
Н	7.205165210	2.210189416	11.584486070
С	13.566789357	1.253962243	11.581221475
Н	14.156506759	0.433020679	11.970284865
С	13.371640959	1.384995203	10.212084459
Н	13.807659506	0.666446103	9.528916033
С	6.775655041	4.312847365	11.486361769
Н	5.753880428	4.203666986	11.828249622
С	13.007360902	2.184609814	12.453176012
Н	13.162829384	2.090799986	13.520934381
F	11.697286085	12.102154587	12.138385919
F	14.833001366	7.668629578	12.065708710
F	15.731363425	9.941687913	13.180405599
F	14.169165838	12.169146542	13.207051139
С	12.758436200	8.656474065	11.479506252
С	11.983648003	9.816502944	11.524777995
С	14.014320690	8.745940877	12.057471981
С	12.443761827	10.992640206	12.099592289
С	13.714489183	11.039772875	12.657448495
C	14.507707009	9.903475797	12.641127298
H	10.834018362	4.854878456	4.261046506
Н	9.487288114	3.187215187	5.591005169
Br	10.208993244	9.851124566	10.808351535

Model	3	т1	
	_		

Au 🗌	12.164704412	6.766000361	10.61967684
Au	12.164704412	6.766000361	10.619676

P	12.995975850	6.841186250	8.244153906
С	11.475173460	4.482331513	5.336630787
С	12.303595331	5.315379166	6.037120095
Н	13.082574664	5.849029979	5.505031249
С	12.157099775	5.516928398	7.443565091
С	14.796922204	6.620738385	8.151480941
C	12.664945561	8.466151938	7.476767772
C	15.339034154	5.361879739	7.874750244
H	14.677628221	4.537831808	7,642875262
C	13 375381247	8 885555923	6 343449650
н	14 218886591	8 309821882	5 984623484
C	11 587755766	9 240997693	7 920506121
н	11 032485977	8 942489082	8 800129855
C	11 940993370	10 811157799	6 127617755
ч	11 663069886	11 719584524	5 607729445
C	11 232940695	10 405724237	7 254977205
ч	10 406137143	11 000998608	7 622407972
C	13 011075060	10 046970272	5 675301303
с ц	13 56933/869	10.357682922	A 800440881
С	16 715056538	5 171057117	7 880086582
U U	17 123883370	1 105162483	7.662105555
п С	15 650020727	7 679016505	0 17100012
	15 25/000056	0 CEA7E2410	0.4/1000012
п	15.254099050 17.562572101	6 220271242	0./04104000
U U	10 625010021	6 079221102	0.19/400330
п	17 021650160	7 492060921	0.213004009
U U	17 600000100	9 20501/100	0.491270040
п D	11 020001035	4 812360234	0.741994320
r C	11 100655712	4.012300234	9.005500502
C	10 255016038	3 947275042	7 357960426
U U	0 159135930	3 108853786	7.557900420
C	10 /08772689	3 796771359	5 992865864
C	9 286967781	4 692420416	10 /13008192
C	8 500867595	5 8/927/988	10.413000192
ц	0.000007000	6 900007007	10 125/2/220
п	0.940104237	2 242700905	10.133424229
C	7 160/17020	5 7001/2102	10.004303007
U U	6 56/088368	6 693904099	10 763687737
C	8 706405807	3 477347076	10 782952/09
U U	0.201417045	2 572026017	10.702952409
С	12 375965024	2.37362081	9 786710995
U U	12.373903024	2 110273308	9.700710995
C	12.202002433	2.410273300	11 000000000
U U	11 620220217	1 027006446	12 627126250
п	7 261622715	4.02/900440	11 126000170
U U	6 022405110	2.420014307	11 /10/61200
п	0.92240JII0	1 140602504	11 726004600
	12 696057690	1.149003364	12 160060012
п С	13 020042445	1 244622042	10 217770015
с ц	13 /0515601/	1.244022043 0 160710295	U.J4///U04J Q 7026///71
11 C	LJ.HZJIJ0U14 6 507666167	U.400/10323 A 574010303	J./UJU444/L 11 100701707
U U	0.J0/00010/ 5 5/2/01/01	4. J / 4U LOZUJ 1. 520625405	11 100520127
11 C	J.J424U10U4 12 660310000	4.JZ00ZJ4UJ 2.1526/0212	12 5/2070504
ч	12 787/56566	2.IJ20492I2 2 086615505	13 622605265
г. Г	12 2/0776700	2.00004JJ0J 11 8333//076	12 521075274
г Г	15 006679355	T 178108200	12 0000007/4
т.		1. I 1010023	12.00000044

16.104987799	9.237892174	13.376044327
13.030346044	8.392862418	11.612419363
12.378846971	9.606812072	11.758634593
14.293623469	8.321502358	12.177738915
12.932939007	10.692035809	12.420208756
14.202702700	10.588193321	12.976284799
14.882703720	9.382333416	12.849663156
11.623594390	4.354601641	4.271578694
9.729628735	3.170242742	5.431948702
11.137381227	9.771697750	11.245490261
14.981820693	12.046814754	13.884691357
	16.104987799 13.030346044 12.378846971 14.293623469 12.932939007 14.202702700 14.882703720 11.623594390 9.729628735 11.137381227 14.981820693	16.1049877999.23789217413.0303460448.39286241812.3788469719.60681207214.2936234698.32150235812.93293900710.69203580914.20270270010.58819332114.8827037209.38233341611.6235943904.3546016419.7296287353.17024274211.1373812279.77169775014.98182069312.046814754

		-
MO	A^	
PIC	ue	–
		_

68			
Model 4	Τ1		
I –	9.962789085	9.941737230	10.732563503
Au	12.049907852	6.915881030	10.589628701
Р	12.941992220	6.844944492	8.213877291
С	10.905409759	4.828383787	5.347369300
С	11.735375756	5.706234259	5.993348512
Н	12.330252277	6.396139183	5.405622369
С	11.817914603	5.761732559	7.412182647
С	14.677317948	6.256137553	8.141498827
С	12.918737394	8.475418095	7.413123217
С	15.019483044	5.206158235	7.284166340
Н	14.263102786	4.763028375	6.649957625
С	14.082976870	9.196535456	7.124707348
Н	15.053858993	8.772353755	7.337983621
С	11.675409707	9.047144818	7.112033295
Н	10.768342565	8.495603334	7.320797126
С	12.764272153	11.015721102	6.250617741
Н	12.705002723	11.998460052	5.799553036
С	11.601461506	10.305595592	6.534508435
Н	10.633434855	10.733746925	6.306809459
С	14.002500913	10.456685812	6.545817336
Н	14.912351260	10.999903102	6.322349910
С	16.323524752	4.727732914	7.247476840
Н	16.578070633	3.920395324	6.571777887
С	15.656240428	6.791733833	8.985134141
Н	15.403052419	7.576047514	9.684863344
С	17.294907657	5.276857826	8.077507844
Н	18.308655281	4.896147632	8.053581276
С	16.957278737	6.307029481	8.949109089
Н	17.703970444	6.727932894	9.611021051
Р	11.059147833	4.850112602	9.948646451
С	10.988623893	4.827636439	8.178942513
С	10.142362748	3.954432914	7.477067493
Н	9.499843082	3.285096821	8.038142517
С	10.084519140	3.930399692	6.099689122
С	9.381531084	4.589286548	10.616603815
С	8.521808324	5.684629081	10.752545500
Н	8.876030676	6.680137547	10.515137944
С	12.044093958	3.432439374	10.575277152
С	7.220444360	5.507227516	11.198192637
Н	6.568739756	6.365515628	11.304215974
С	8.910595078	3.314057372	10.942863228

Н	9.563068978	2.454963706	10.857801464
С	12.585719584	2.487746334	9.704700495
Н	12.400641097	2.572609703	8.641773885
С	12.298152603	3.323236257	11.946544835
Н	11.893101911	4.058184657	12.632853419
С	7.603497204	3.139524158	11.386340837
Н	7.251183254	2.145513323	11.633064081
С	13.602221985	1.335258152	11.562042957
Н	14.207849502	0.522896886	11.944647934
С	13.361084320	1.442646566	10.198175160
Н	13.777359754	0.714564535	9.512790717
С	6.756524068	4.232734625	11.515655966
Н	5.741006410	4.095839702	11.866237175
С	13.068610784	2.278294724	12.436795110
Н	13.259668814	2.202545028	13.500218068
F	11.680764729	12.177796252	12.106581194
F	14.770304204	7.713057746	12.043021674
F	15.695704943	9.981791027	13.136028104
F	14.156618405	12.225914861	13.158009107
С	12.702126484	8.717207523	11.455494440
С	11.935590026	9.885490262	11.498669570
С	13.961163383	8.798073062	12.028570342
С	12.413996616	11.057335223	12.065680934
С	13.687967809	11.098028395	12.616769821
С	14.469249967	9.953948948	12.602965142
Н	10.854540676	4.834580310	4.266218729
Н	9.409937930	3.251717779	5.596106226

Model_5 T1

Au	12.157687320	6.775710229	10.619533891
Р	12.993645327	6.838870401	8.243739227
С	11.429471432	4.507787183	5.336406802
С	12.268856993	5.332586677	6.033658514
Н	13.045111397	5.865865124	5.497248163
С	12.135798575	5.527377293	7.442347152
С	14.791714518	6.592010839	8.152447954
С	12.686076889	8.466032412	7.472470123
С	15.314613153	5.327059860	7.866720556
Н	14.640651215	4.515027354	7.628698355
С	13.414252179	8.880528850	6.348773591
Н	14.257248449	8.297988642	6.000020208
С	11.609470390	9.249082769	7.903173545
Н	11.040124863	8.954131563	8.774921153
С	11.998248983	10.817656403	6.116282196
Н	11.734172644	11.728619723	5.593604382
С	11.272655379	10.417031453	7.234254883
Н	10.445947264	11.018550952	7.591579291
С	13.067747874	10.045367267	5.677065022
Н	13.639438710	10.352007549	4.809374251
С	16.687562187	5.115989169	7.879925476
Н	17.081359972	4.134672025	7.646080854
С	15.669568482	7.633564298	8.480219279

Н	15.279517250	8.614572699	8.720567897
С	17.552053642	6.158116082	8.195841103
Н	18.621991121	5.990571145	8.212165289
С	17.039197193	7.416598430	8.498900014
Н	17.708160364	8.228463039	8.755890764
Ρ	11.031874238	4.813790393	9.891088392
С	11.082842087	4.776910189	8.120337384
С	10.226117922	3.966940617	7.366402724
Н	9.431882425	3.429481051	7.872793601
С	10.365977527	3.823773639	5.998864157
С	9.296881504	4.678943907	10.437650479
С	8.504563390	5.831276099	10.460572310
Н	8.935725963	6.788189488	10.192416137
С	11.882074468	3.345056642	10.590200940
С	7.168534212	5.759756460	10.828774115
Н	6.567265336	6.660081052	10.845496545
С	8.727447307	3.455813811	10.798436622
Н	9.327854100	2.555665017	10.797758888
С	12.376178156	2.338574829	9.760492427
Н	12.238260642	2.412458831	8.689679599
С	12.072247282	3.246549154	11.972525603
Н	11.705517902	4.028335841	12.627574719
С	7.387078526	3.386737013	11.165756235
Н	6.956335278	2.431901179	11.440675855
С	13.218525930	1.148860413	11.680648905
Н	13.738233404	0.297892141	12.103422643
С	13.041348322	1.244672669	10.306021702
Н	13.420860857	0.468621851	9.652743472
С	6.606656031	4.535724752	11.182106378
Н	5.564868612	4.480769668	11.472939490
С	12.731529013	2.152002393	12.514406138
Н	12.873813985	2.085271772	13.585961719
F	12.155419007	11.855155666	12.473128185
F	14.986614219	7.234716188	12.113430401
F	16.046860891	9.313162435	13.388001045
С	12.999735871	8.419401557	11.604686665
С	12.332768010	9.626889941	11.734951000
С	14.258290389	8.369714808	12.182945892
С	12.869034716	10.723535487	12.392581539
С	14.133622124	10.644924313	12.963400010
С	14.825800153	9.444995607	12.851129617
Η	11.566640657	4.386007903	4.269140541
Н	9.678255425	3.204034213	5.440865989
F	11.093527817	9.772660297	11.209716587
I	14.965786924	12.279599349	13.965596181

5. Coordination environment for the gold(I) centers for complexes **2-5** at the ground state S_0 and the first triplet excited state T_1

Table S4. Selected bond lengths (Å) and angles (°) for the coordination environment of the gold(I) centers for complexes **2-3**

	2			3	
	X-Ray	S ₀	T 1	S ₀	T 1
Au-C (Å)	2.084	2.08	2.10	2.07	2.09
Au-P (Å)	2.2794	2.31	2.38	2.31	2.38
Au-P (Å)	3.4398	3.08	2.53	3.08	2.52
C-Au-P (°)	177.16	174.63	169.29	173.37	169.50
C-Au-P (°)	118.29	110.74	107.42	111.21	106.72
P-Au-P (°)	64.29	74.32	82.96	74.36	83.73

Table S5. Selected bond lengths (Å) and angles (°) for the coordination environment of the gold(I) centers for complexes 4-5

	4		5	
	S ₀	T ₁	S ₀	T ₁
Au-C (Å)	2.08	2.10	2.07	2.09
Au-P (Å)	2.31	2.38	2.31	2.38
Au-P (Å)	3.07	2.54	3.08	2.52
C-Au-P (°)	175.51	169.79	174.21	169.47
C-Au-P (°)	109.92	107.48	110.05	106.90
P-Au-P (°)	74.56.70	82.53	74.22	83.62

Figure S52. Coordination environment for the gold(I) centers for complexes 3-5 at the ground state S_0 and the first triplet excited state T_1

6. Computational calculation of the energy difference between S_0 and T_1

Table S6. The energy difference between the ground singlet state and the lowest excited triplet state calculated at the B3LYP/def2-TZVP level are compared to the experimental data. Spin-orbit coupling matrix element (SOC in cm⁻¹); rate constant for intersystem crossing (K_{ISC} ($S_0 \rightarrow T_1$) are also reported for complexes **2-5**

	SOC(S ₀ -T ₁)	$\Delta E(S_0-T_1)$ Theory	ΔE(S ₀ -T ₁) Exp.	E(S ₀ -T ₁) Exp.	k _{ISC} (S ₀ -T ₁) (Theor. Energy)	k _{ISC} (S ₀ -T ₁) (Exp. Energy)
2	46.8 cm ⁻¹	10730 cm ⁻¹	17668 cm ⁻¹	566 nm	1.10^{4}s^{-1}	3·10 ⁻⁴ s ⁻¹
3	59.5 cm ⁻¹	9491 cm ⁻¹	16949 cm ⁻¹	590 nm	4·10 ⁵ s ⁻¹	3·10⁻³ s⁻¹
4	56.5 cm ⁻¹	10920 cm ⁻¹	16234 cm ⁻¹	616 nm	1.10^{4}s^{-1}	2·10 ⁻² s ⁻¹
5	60.2 cm ⁻¹	9618 cm ⁻¹	16807 cm ⁻¹	595 nm	3·10 ⁵ s ⁻¹	5·10 ⁻³ s ⁻¹

7. Frontier HOMO and LUMO for complexes 3-5.

Figure S53. The orbitals obtained in the CASSCF calculation that correspond to the HOMO (left) and the LUMO (right) of complex $[Au(p-C_6BrF_4)(dppBz)]$ (**3**)

Figure S54. The orbitals obtained in the CASSCF calculation that correspond to the HOMO (left) and the LUMO (right) of complex $[Au(o-C_6F_4I)(dppBz)]$ (4)

Figure S55. The orbitals obtained in the CASSCF calculation that correspond to the HOMO (left) and the LUMO (right) of complex $[Au(p-C_6F_4I)(dppBz)]$ (5)

8. Transition densities calculations

Figure S56. Transition densities for complexes $[Au(p-C_6BrF_4)(dppBz)]$ (**3**) (left) and $[Au(p-C_6F_4I)(dppBz)]$ (**5**) (right). During the transition the electron density increases in the green areas and decreases in the red ones.