Supplementary Information

Coil-rod-coil triblock copolymers synthesized by macromolecular clicking and their compatibilizer effects in all-polymer solar cells

Sultan Otep,^a Yu-Cheng Tseng,^b Naomasa Yomogita,^a Jia-Fu Chang,^b Chu-Chen Chueh^{b,*} and Tsuyoshi Michinobu^{a,*}

^a Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan. E-mail: michinobu.t.aa@m.titech.ac.jp

^b Department of Chemical Engineering and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan. E-mail: cchueh@ntu.edu.tw

Figure S1. ¹H NMR spectrum of PDET₃₈ in CDCl₃.

Figure S2. ¹H NMR spectrum of PDET₅₅ in CDCl₃.

Figure S3. ¹H NMR spectrum of PS₃₇-Br in CDCl₃.

Figure S4. ¹H NMR spectrum of PS₆₄-Br in CDCl₃.

Figure S5. ¹H NMR spectrum of PS₆₄-N₃ in CDCl₃.

Figure S6. FTIR spectrum of PS₃₇-Br.

Figure S7. FTIR spectrum of PS₆₄-Br.

Figure S8. Comparison of FTIR spectra of PS₃₇-N₃, PDET₃₈ and P2.

Figure S9. Comparison of FTIR spectra of PS₃₇-N₃, PDET₅₅ and P3.

Figure S10. Comparison of FTIR spectra of PS_{64} -N₃, PDET₅₅ and P4.

Figure S11. GPC curves of a) P2, PS₃₇-N₃ and PDET₃₈, b) P3, PS₃₇-N₃ and PDET₅₅, and c) P4, PS₆₄-Br and PDET₅₅.

Figure S12. The 1st and 2nd heating scans of DSC curves of a) PS_{37} -N₃ and b) P1.

Figure S13. Comparison of UV-vis absorption spectra and CV curves of the polymers. UV-vis absorption spectra in chloroform (CF), as-cast film and annealed film of a) P2 and PDET₃₈, c) P3 and PDET₅₅, and e) P4 and PDET₅₅. CV curves of b) P2 and PDET₃₈, d) P3 and PDET₅₅, and f) P4 and PDET₅₅, measured in CH₃CN with 0.1 M $(nC_4H_9)_4NPF_6$.

Figure S14. Larger scan area images of the annealed films of a) P2, b) P3 and c) P4. Films were annealed on a hot plate at 120 °C for 30 min.

Figure S15. AFM topography images of the films of PDET₂₉ a) as-cast, b) annealed at 100 °C and c) annealed at 200 °C. AFM topography images of the films of P1 d) as-cast, e) annealed at 100 °C and f) annealed at 200 °C.

Polymer ^{a)}	(GPC ^{b)}		¹ H NN	(IR ^{c)}	
	M _n (kg mol ⁻¹)	Ð	DP	M _n (kg mol ⁻¹)	DP	Functionality, %
PDET ₂₉	6.26	3.06	29	6.12	29	
PDET ₃₈	8.14	2.82	38	8.50	40	
PDET ₅₅	11.77	2.83	55	13.38	62	
PS ₃₇ -Br	3.97	1.05	37	3.79	35	90 ^d)
PS ₆₄ -Br	6.85	1.05	64	6.61	62	91 ^d)

Table S1. Properties of the synthesized homopolymers.

^{a)} Labeled according to the degree of polymerization (DP) determined by GPC: **PDET**_{DP} and PS_{DP}-Br. ^{b)} Measured with *o*-dichlorobenzene at 40 °C and molecular weights estimated by comparing to polystyrene standards. ^{c)} For **PDET**, estimated from the ratio of the ¹H NMR peak areas of the terminal alkyne and the repeat DET units. For PS-Br, estimated from the ratio of the ¹H NMR peak areas of the terminal methoxy group and repeat benzene rings. ^{d)} Azido-functionality calculated from the ¹H NMR peak areas of the methoxy group and the *α*-hydrogen on the other end of the polymer chain. See Figure 1 for the details of the evaluation of the ¹H NMR results.

Table 52. Detailed energy 1035 of the fabricated an-1 5CS.												
	E_{gap} (eV)	V_{oc} (eV)		Eloss (eV)	f (eV ²)	λ (eV)	$ E_{CT} $ (eV)	(eV)	ΔE_2 (eV)	(eV)		
Control	1.481	0.878		0.603	0.0204	0.279	1.42	0.267	0.061	0.276		
1 wt% P1	1.487	0.885		0.602	0.0154	0.212	1.44	0.262	0.047	0.293		
1 wt% PDET	1.516	0.862		0.654	0.0204	0.141	1.46	0.275	0.056	0.323		

Table S2. Detailed energy loss of the fabricated all-PSCs.