Electronic Supplementary Information (ESI)

A rational design of Carbon Dots via the combination of Nitrogen and

Oxygen Functional Groups toward the first NIR window Absorption

Reza Umami^{‡a}, Fitri Aulia Permatasari^{‡a}, Diva Addini Maghribi Muyassiroh^a, Arum Sinda

Santika^a, Citra Deliana Dewi Sundari^{b,c}, Atthar Luqman Ivansyah^{d,e} Takashi Ogi^f and Ferry

Iskandar^{a,g*}

^aDepartment of Physics, Faculty Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java 40132, Indonesia.

^bInorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, West Java 40132, Indonesia.

^cDepartment of Chemistry Education, UIN Sunan Gunung Djati Bandung, Jl. Cimincrang, Bandung, West Java 40292, Indonesia.

^dMaster Program in Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, West Java, Bandung, 40132, Indonesia

^eDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, West Java, Bandung, 40132, Indonesia

^fChemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan

^gResearch Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java 40132, Indonesia.

*Email: ferry@fi.itb.ac.id

[‡] Authors with equal contribution.

Table of Content

Table S1	Excitation energies, wavelengths, oscillator strengths, transition	
	coefficients and percentage transition contribution of excited states in	
	CDs with Nitrogen functionalization	3
Table S2	The percentage of pyridinic-N, pyrrolic-N and graphitic-N content in	
	XPS N1s of the as-synthesized CDs	3
Table S3	The percentage of the presence of surface functional O atom bonds in	
	the XPS O1s of the as-synthesized CDs	3
Fig. S1	The absorbance spectra of CDs that was prepared by microwave	
	assisted-hydrothermal for 4h at 140°C	4
Fig. S2	The Optimized structure and calculated absorption wavelength of PAH	
	with different size as a CDs' model	4
Fig. S3	Photoluminescence (PL) emission and excitation spectra of the as-	
	synthesized CDs. The inset picture is digital photograph of the as-	
	synthesized CDs under Visible light and 365 nm-UV irradiations	5
Fig. S4	AFM image of the as-synthesized CDs that exhibit a first NIR window.	
	The inset image is the height profile of the CDs along AB axis. The	
	CDs particle in spherical shape with the height of 3.45 nm	5
Fig. S5	The calculation of absorbance spectra on CDs doped configuration-N	
	(pyridinic-N, pyrrolic-N and graphitic-N)	6
Fig. S6	Full Scan XPS of the as-synthesized Carbon Dots that prepared	
	through a microwave assisted hydrothermal. The chemical	
	composition was calculated based on the Full scan XPS with weighting	
	RSF factor in CasaXPS	6
Fig. S7	The bandgap energy levels on CDs doped configuration-N (pyridinic-	
	N, pyrrolic-N and graphitic-N)	7
Fig. S8	The calculation of absorbance spectra on CDs with variations in the	_
F· (0)		1
Fig. 89	Transition Density Matrix of the CDs with various combination N and	
	O surface functional groups. Each model was defined as seven	
	tragments that represents the sp ² carbon structure, N configurations	
	(amino, N-pyridinic, N-pyriolic and N-Graphitic) and O functional	0
E' . 010	groups (carbonyl)	8
F1g. 510	(a) NIS XPS spectrum of the N-Graphitic CDs-C=O. (b) OIS XPS	
	spectrum of the N-Graphitic-C=O. (c) Absorption spectrum of the N-	
	Graphitic CDs-C=O. The inset picture is the digital image of the	0
	samples under visible light and 365 nm UV lamp irradiation	8

<i>a.</i> .			Oscillat	Transition coefficients	Contrib ution (%)	Carbon		Nitrogen	
Structure CDs	Sn	λ abs (nm)	or strength (f)			Occ.	Unocc.	Occ.	Unocc.
Pristine CDs				H-1 \rightarrow L+1	38.6%	1.00	1.00	-	-
	S 3	441	1.303	$H \rightarrow L$	38.4%	1.00	1.00	-	-
				$H \rightarrow L+1$	11.5%	1.00	1.00	-	-
				H-1 → L	11.5%	1.00	1.00	-	-
Amino CDs S1	01	505	0.087	H-1 → L	77.5%	0.91	1.00	0.09	0.00
	51	585		$H \rightarrow L+1$	22.5%	1.00	0.97	0.00	0.03
N-pyrrolic CDs S2		525	0.101	H → L	74.7%	1.00	0.99	0.00	0.01
	S 2			H-1 \rightarrow L+1	25.3%	0.93	1.00	0.07	0.00
N- pyridinic CDs				$H \not\rightarrow L+1$	52.3%	1.00	1.00	0.00	0.00
	S 3	446	1.147	H-1 → L	44.7%	0.97	0.94	0.03	0.06
				H-2 \rightarrow L+2	3.0%	0.97	0.94	0.03	0.06
N- graphitic	S2	786	0.215	$H \rightarrow L+1$	89.3%	1.00	0.93	0.00	0.07
				H-1 → L	7.3%	1.00	0.90	0.00	0.10
				H-2 \rightarrow L+2	3.3%	1.00	1.00	0.00	0.00

Table S1. Excitation energies, wavelengths, oscillator strengths, transition coefficients and percentage transition contribution of excited states in CDs with Nitrogen functionalization.

Table S2. The percentage of N-pyridinic, N-pyrrolic, N-graphitic and amino content in XPS N1s of the as-synthesized CDs

Sample	N-pyridinic	N-pyrrolic	N-Graphitic	Amino groups
N-pyrrolic CDs-C=O	(2.98±3) %	(54.80±3) %	(18.30±3) %	(23.92±3) %
N-graphitic CDs-C=O	(1.25±3) %	(15.82±3) %	(63.43±3) %	(19.50±3) %

Table S3. The percentage of the presence of surface functional O atom bonds in the XPS O1s of the as-synthesized CDs

Sample	C=0	С-О-С, С-О-ОН
N-pyrrolic CDs-C=O	(53.80±3) %	(46.20±3) %
N-graphitic CDs-C=O	(55.87±3) %	(44.23±3) %

Fig. S1. The absorbance spectra of CDs that was prepared by microwave assisted-hydrothermal for 4h at 140°C.

Fig. S2 The Optimized structure and calculated absorption wavelength of PAH with different size as a CDs' model.

Fig. S3 Photoluminescence (PL) emission and excitation spectra of the as-synthesized CDs. The inset picture is digital photograph of the as-synthesized CDs under Visible light and 365 nm-UV irradiations.

Fig. S4 AFM image of the as-synthesized CDs that exhibit a first NIR window. The inset image is the height profile of the CDs along AB axis. The CDs particle in spherical shape with the height of 3.45 nm.

Fig. S5. The calculation of absorbance spectra on CDs doped configuration-N (pyridinic-N, pyrrolic-N and graphitic-N).

Fig. S6 Full Scan XPS of the as-synthesized Carbon Dots that prepared through a microwave assisted hydrothermal. The chemical composition was calculated based on the Full scan XPS with weighting RSF factor in CasaXPS.

Fig. S7 The bandgap energy levels on CDs doped configuration-N (pyridinic-N, pyrrolic-N and graphitic-N).

Fig. S8 The calculation of absorbance spectra on CDs with variations in the number of amino.

Electronic Supplementary Information (ESI)

Fig. S9 Transition Density Matrix of the CDs with various combination N and O surface functional groups. Each model was defined as seven fragments that represents the sp² carbon structure, N configurations (amino, N-pyridinic, N-pyrrolic and N-Graphitic) and O functional groups (carbonyl).

Fig. S10 (a) N1s XPS spectrum of the N-Graphitic CDs-C=O. (b) O1s XPS spectrum of the N-Graphitic-C=O. (c) Absorption spectrum of the N-Graphitic CDs-C=O. The inset picture is the digital image of the samples under visible light and 365 nm UV lamp irradiation.