Supporting information

The impact of fluorine atoms on a triphenylamine-based dopant-free hole-selective layer for perovskite solar cells

Abolfazl Ghaderian,^a Meenakshi Pegu,^a Naveen Harindu Hemasiri,^a Peng Huang,^a Shahzada Ahmad,^{a,b*} Samrana Kazim,^{a,b*}

BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain.

IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain.

samrana.kazim@bcmaterials.net; shahzada.ahmad@bcmaterials.net

1. Synthesis

The synthesis of **FOMePh** reported for the first time and **OMePh** is described by the modification of the previous report.¹ In summary, in a dry round bottom flask with a magnetic stir bar, tribrominated triphenylamine² derivative (0.519 mmol), bis(4-methoxyphenyl)amine or 3-fluoro-4-methoxy-N-(4-methoxyphenyl)aniline³ (1.66 mmol), palladium(II) acetate (0.16 mmol), sodium tert-butoxide (6.23 mmol) and anhydrous toluene (20 mL) were charged. The mixture was then degassed by N₂ purging for 30 min. Tri-tert-butylphosphine (0.341 mmol) was added *via* syringe. The mixture was heated at 120°C for 2 days and then allowed to cool to room temperature. The mixture was diluted with chloroform (40 mL), washed with brine (x2) and water, dried over anhydrous MgSO₄, filtered, and concentrated to give a viscous oil to which was added methanol (100 mL) with stirring. The precipitate was then filtered, rinsed with methanol. The crude product was purified by column chromatography eluting with CH₂Cl₂/ Hexane (50/50 \rightarrow 100/0 v/v) to yield the desired product (Yield 50%). ¹**H NMR** (C₆D₆, δ /ppm): 7.23 (m, 12 H), 7.13 (t, 3 H, *J*= 9.14), 7.07 (d, 6 H, *J*= 9.14), 6.80 (d, 6H, *J*= 9.08), 6.64 (dd, 3H, *J*= 12.24), 6.55 (dd, 3H, *J*= 2.4, 8.78), 3.38 (s, 9 H), 3.23 (s, 9 H). ¹³C NMR (C₆D₆ δ /ppm): 160.48, 158.49, 158.22, 158.14, 155.77, 143.41, 142.23, 141.12, 130.25, 124.82, 124.57,

121.37, 114.78, 110.94, 103.00, 102.82, 54.90, 54.77. **HRMS** (ESI⁺): calculated for M⁺: 980.3761, found: 980.3762.

Figure S1. ¹HNMR of **FOMePh** in C_6D_6 . Inset: the magnification of the aromatic region.

Figure S2. ¹³CNMR of **FOMePh** in C_6D_6 .

Figure S3. ESI mass spectrum of the FOMePh.

Figure S4. (A) UV-vis-NIR absorption spectra of a thin film of different HTLs on the glass substrates, (B) CV of 1mM Spiro-OMeTAD and Ferrocene in 0.1 M nBu4NPF6 DCM.

Figure S5. Cross-sectional SEM image of hole-only devices with (A) **FOMePh** (B) **OMePh** (C) Spiro-OMeTAD.

Figure S6. Topography of (A) FAMA and with (B) FOMePh (C) OMePh, and (D) Spiro-OMeTAD, (E-H) corresponding 3-dimensional image.

Figure S7. Device statistics: (A) PCE, (B) V_{oc} , (C) FF and (D) J_{SC} , for Spiro-MeOTAD and **FOMePh** based PSCs.

Table S1. Photovoltaics parameters for the various concentration of **FOMePh** in n-i-p type PSCs.

FOMePh	V _{oc} (mV)	J _{sc} (mAcm⁻²)	FF (%)	PCE (%)
30 mM	980.2	23.9	72.5	17.1
20 mM	997.0	22.7	51.8	11.7

Figure S8. Reverse and Forward J-V scans for (A) Spiro-OMeTAD, (B) FOMePh, and (C) OMePh

Figure S9. Dark current density–voltage $(J_d - V)$ characteristics of all the HTLs

Figure S10. Mott Schottky plots measured at 10 kHz under dark for (A) OMePh and (B) FOMePh.

Table S2. The electrochemical impedance parameters were extracted from the PSCs with different HTMs at 0.95V bias under dark conditions.

Device	R _s	R _{ct}	R _{rec}	f _P	τ
	(Ω.cm²)	(Ω.cm²)	(Ω.cm²)	(µs)	(μs)
FOMePh	7.48	36.08	246.00	32.69	5.20
Spiro-OMeTAD	6.27	62.83	96.54	19.99	3.18

Figure S11. Equivalent circuit used for EIS.

Cost analysis

Reagent	Amount (g)	Amount (mL)	Price (€/g or €/mL)	Final Price (€)
Triphenylamine	1.373		3.738	5.132
Br ₂		1.1	0.3373	0.3710
CH ₃ Cl		7.5	0.0204	0.153
EtOH		30	0.0040	0.120
Total cost for the reaction		5.776€		
Amount tris(4-bromophenyl)amine	2	1.4 g		
COST for 1g Tribrominated tripheny	ylamine	4.126 €/g		

Table S3. Cost calculation of Tribrominated triphenylamine.

Table S4. Cost calculation of **FOMePh**

Reagent	Amount (g)	Amount (mL)	Price (€/g or €/mL)	Final Price (€)
tris(4-bromophenyl)amine	0.250		4.126	1.031
3-fluoro-4-methoxy-N-(4- methoxyphenyl)aniline	0.380		23.200	8.816
Palladium(II)acetate	0.036		68.000	2.448
tBuONa	0.598		0.398	0.238
Tri-tert-butylphosphine	0.063		54.600	3.440
Toluene		20	0.019	0.38
CH ₃ Cl		40	0.020	0.8
Silica gel	40		0.004	0.16
Hexane		300	0.003	0.9
CH ₂ Cl ₂		350	0.006	2.1
MgSO ₄	2		0.031	0.062
Total cost for the reaction	20.37 €			
Amount FOMePh	0.254			
COST for 1g FOMePh	80.19 €/g			

References SI:

- 1- T.-T. Bui, L. Beouch, X. Sallenave and F. Goubard, *Tetrahedron Lett.*, 2013, 54, 4277-4280.
- 2- Z.-X. Zhao, Z.-L. Hu, X.-T. Zhang and Q.-X. Liu, Tetrahedron, 2019, 75, 130675
- 3- M. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi, J. Lee, J.-H. Bae, S. K. Kwak, D. S. Kim and C. Yang, *Science*, 2020, 369, 1615-1620.