Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Te⁴⁺-Doped Zero-Dimensional Cs₂ZnCl₄ Single Crystals for

Broadband Yellow Light Emission

Xiaoxia Liu, Chengdong Peng,* Lijie Zhang, Daying Guo and Yuexiao Pan*

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.

Email:cdpeng@wzu.edu.cn &yxpan@wzu.edu.cn

Fax&Tel: +86-577-8837-3017

Tables:

	Cs ₂ ZnCl ₄	Cs ₂ ZnCl ₄ :Te ⁴⁺	
Temperature, K	296(2)	296(2)	
Crystal system	Orthorhombic	Orthorhombic	
space group	Pnma	Pnma	
	a = 9.7749(11) Å	a = 9.867(10) Å	
Unit cell dimensions	b = 7.4136(8) Å	b = 7.458(8) Å	
	c = 12.9810(14) Å	c = 12.959(13) Å	
	$\beta = 90.00 \text{ deg}$	$\beta = 90.00 \text{ deg}$	
Volume/ Å ³ , Z	940.70(18), 2	953.6(17), 2	
$\rho_{calc} /g \; cm^{-3}$	3.340	3.294	
μ / mm^{-1}	11.282	11.129	
F(000)	832	832	
θ range /deg	3.77 to 25.0	3.77 to 28.31	
Limiting indices	-11 < = h < = 10	-12 < = h < = 13	
	-8 <= k <= 5	-9 < = k < = 9	
	-15 < = 1 < = 15	-17 < = 1 < = 12	
Reflections collected	3629	6342	
Independent reflections	869[R(int) = 0.0413]	850[R(int) = 0.0282]	
Absorption coefficient / mm ⁻¹	0.022	0.015	
Data / restraints / parameters	888 / 0 / 41	996 / 0 / 41	
Goodness-of-fit on F ²	1.349	1.176	
Final R indices [I>2sigma(I)]	R1 = 0.0357,	R1 = 0.0757,	
	wR2 = 0.0387	wR2 = 0.1073	
R indices (all data)	R1 = 0.1137,	R1 = 0.2248,	
K marces (an data)	wR2 = 0.1239	wR2 = 0.2941	

Table S1. Crystal data and structure refinement for Cs_2ZnCl_4 and Cs_2ZnCl_4 :Te⁴⁺.

 $R1 = \sum (||F_o|-|F_c||) / \sum |F_o|; wR2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)]^2 \}^{1/2}$

Table S2. The experimental mole ratio of Te^{4+} calculated from starting materials and the actual doping concentration of Te^{4+} in crystals Cs_2ZnCl_4 measured in the sample by using inductive coupled plasma emission spectrometer (ICP).

Experimental mole ratio of Te	Conc. (mg/L)	Actual doping concentration of Te
1%	0.312	0.21%
2%	0.651	0.43%
4%	1.796	1.19%
6%	3.688	2.46%
8%	4.397	2.93%
10%	4.564	3.04%
12%	6.043	4.02%

Table S3. Second order fitting parameters of decay at 0, 1, 2, 4, 6, 8, 10 and 12 mol% Te^{4+} doped Cs_2ZnCl_4 .

Te%	1	2	4	6	8	10
τ (ns)	62.94	55.42	54.01	53.22	53.22	50.87

Figures:

Fig. S1 The change of bond Angle during Te⁴⁺ substitution.

Fig. S2 (a) Elemental mapping of the $Cs_2ZnCl_4:Te^{4+}$ showing the presence of (b) caesium, (c) zinc, (d) tellurium, and (e) chlorine.

Fig. S3 The corresponding energy dispersive spectroscopy (EDS) of the as-prepared (a) undoped Cs_2ZnCl_4 and (b) Cs_2ZnCl_4 :Te⁴⁺ sample collected on FEI Nova 200 NanoSEM instrument.

Fig. S4 The actual doping amount of Te⁴⁺ at different concentrations was measured by inductive coupled plasma optical emission spectrometer (ICP-OES) is performed on PerkinElmer ICP-OES OPTIMA8000.

Fig. S5 (a) The high-resolution XPS analysis of $Cs_2ZnCl_4:Te^{4+}$ corresponding to (b) Zn 2p, (c) Cs 3d, (d) Te 3d and (e) Cl 2p, respectively, which was done with a Thermo Scientific Escalab 250 Xi instrument using monochromatic Al *K* α radiation (hv = 1486.7 eV).

Fig. S6 (a) FT-IR spectra of the Cs_2ZnCl_4 and Cs_2ZnCl_4 :Te⁴⁺ were recorded on a Nicolet iS20 Fourier-transform infrared spectrometer using the KBr method. Raman was performed by Renishaw inVia, and (b) the Raman spectra for Cs_2ZnCl_4 :Te⁴⁺ doped with different concentration of Te⁴⁺.

Fig. S7 Optical microscopic images of undoped Cs_2ZnCl_4 single crystal taken under natural light (left) and UV light (right).

Fig. S8 Normalized PL and PLE of Cs_2ZnCl_4 at room temperature ($\lambda_{ex} = 267$ nm, λ_{em}

= 491 nm).

Fig. S9 Thermogravimetrics (TG) and differential thermal analysis (DTA) graphs of as the synthesized (a) Cs_2ZnCl_4 and (b) Cs_2ZnCl_4 :Te⁴⁺ performed on a PerkinElmer Diamond TG-DTA at 10 °C/min in an argon flow from room temperature to 800 °C. under N₂ atmosphere.

Fig. S10 The emission intensities of Cs_2ZnCl_4 :Te⁴⁺ dependent on the temperatures.