Side-liquid-gated electrochemical Transistors and their Neuromorphic Applications

Supplementary Information

Shuangqing Fan¹, Ting Xu¹, Enxiu Wu², Minghui Cao¹, Tong Liu¹, Jie Su^{1,*}

¹School of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China.

²State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China.

These authors contributed equally: Jie Su.

*E-mail: jsu@qdu.edu.cn

Fig. S1. AFM image of Er_2O_3 and In_2O_3 a Surface morphology and corresponding height profile of Er_2O_3 . b Surface morphology of In_2O_3 .

Fig. S2. IR spectra (KBr) for the SiO_2/Si substrate before and after PEO gating.

Fig. S3. The Si/SiO₂ interface Model. The position of the interface is shown by the dashed line. The black arrow shows the most probable migration path for a proton in the Si/SiO2 interface. Interface with suboxide bond (the Si–Si bond at the SiO₂ side) of the interface is indicated by the green arrow. The red and yellow spheres are O and Si atoms, respectively.

Fig. S4. The transfer characteristic curves of In_2O_3/SiO_2 TFT under different backgate voltage. The blue solid line represents the transfer characteristic curves of In_2O_3/SiO_2 TFT without backgate. The hollow pentagon, triangle, and hexagon represents the transfer curves of In_2O_3/SiO_2 TFT under fixed backgate voltage of 30 V, 0V, and -30V, respectively.

Fig. S5. Electrical characteristic of the MoS_2/SiO_2 FET and Pentacene/Er₂O₃ TFT. a, b Transfer characteristic curves of MoS_2/SiO_2 FET (a) and Pentacene/Er₂O₃ TFT (b). c, d Output curves of MoS_2/SiO_2 FET (c) and Pentacene/Er₂O₃ TFT (d).

Fig. S6. The synaptic plasticity behavior of the PEO:LiClO₄-gate MoS_2/SiO_2 and Pentacene/Er₂O₃ synaptic transistors. a, b IPSC of the PEO:LiClO₄-gate MoS_2/SiO_2 (a) and Pentacene/Er₂O₃ (b) synaptic transistor triggered by a pair of displacement pulses. b, d Corresponding PPD index over various spike time intervals.

Fig. S7. The transition from STP to LTP of PEO:LiClO₄ gated 2D-MoS₂/SiO₂ FET and pentacene/Er₂O₃ TFT. a, b IPSCs of 2D-MoS₂/SiO₂ FET (a) and pentacene/Er₂O₃ TFT (b) triggered by side-gate pulses with different duration time. c, d IPSCs 2D-MoS₂/SiO₂ FET (c) and pentacene/Er₂O₃ TFT (d) triggered by side-gate pulses with different voltages.

Fig. S8.The Δ IPSC of PEO:LiClO₄ gated In2O3/Er2O3 TFT under side-gate pulse ranging from 1 V to 4 V.