ELECTRONIC SUPPLEMENTARY INFORMATION

Investigation of Factors Affecting the Stability of Compounds Formed by Isovalent Substitution in Layered Oxychalcogenides, Leading to Identification of Ba₃Sc₂O₅Cu₂Se₂, Ba₃Y₂O₅Cu₂Se₂, Ba₃Sc₂O₅Ag₂Se₂ and Ba₃In₂O₅Ag₂Se₂.

[Please note: this document was updated 20th November 2023, to amend a typographical error appearing in one of the formulae in the title]

Gregory J. Limburn^a, Daniel W. Davies^{b,c}, Neil Langridge^a, Zahida Malik^a, Benjamin A. D. Williamson^c, David O. Scanlon^b, Geoffrey Hyett^{a*}

- ^a School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
- ^b Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- ^c Research Computing Service, Information and Communication Technology, Imperial College London, London, SW7 2AZ, UK.

^d Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway

*Corresponding Author: g.hyett@soton.ac.uk

	Formula	ΔHf / eV	Formula	ΔHf / eV	Formula	ΔHf/eV
0	CuS	-3.44547	Se	-3.8054	BaSe ₂	-4.67216
1	$Ba(Ag_3O_2)_2$	-3.61945	La ₁₀ S ₁₄ O	-7.15085	In	-2.98475
2	Ba2Y(CuO ₂) ₄	-5.93288	Cu	-2.59161	$Y_2(SO_4)_3$	-7.49282
3	BaScCuS ₃	-5.7897	Sc ₂ Se ₃ O ₁₀	-6.86857	Y ₂ S ₃	-7.49454
4	CuS ₂	-3.97707	In ₄ Ag ₉	-2.10105	LaCu ₂	-3.6207
5	Baal aAg ₅ S ₆	-4.29224	Y ₂ O ₃	-9.51497	Baln ₂	-3.23909
6		-6 76352	ScSe	-6.89272	Ba₄InAgS₅	-4.8908
7	BaAg _o S _r	-3 10055	AgSO4	-5.4649	LaS ₂	-6.63879
8	Baulno	-3 91582	Bal aCuS ₂	-5.66111	$Ba_2(CuO_2)_2$	-5.3824
9	ScCu ₂	-4 09059	CuseO	-5 13146	BaCuaSa	-3 98347
10	$Ba(\Delta\sigma S)_{\alpha}$	-3 80156	Δσ2524	-2 66386	Ba(YS ₂) ₂	-6 95337
11		-6 19579	Ag_2S_2	-5 50571		-4 55251
12		-7 1798/	γ.625267	-6.81909	$B_2(InS_2)_2$	-4 75879
12		6 67669	ScCu	-/ 77195	Ba(InSe_)-	-// 37299
14	$5c_25c_3$	9 72514	Se O	-5 3780/		-7.00477
14	SU_2SU_2	-8.72514	3e ₂ O ₅	-3.37804		-7.00477 E 06472
15	CuO	-4.34392		-7.084 <i>3</i> 2		2 12028
10	Base	-5.03127		-5.23030		-5.12056
1/	Ins	-4.2109		-5.24417	1 ₂ Se ₃	-0.94221
18	BaCu ₁₃	-2.54684	Ba ₂ In ₂ S ₅	-4.90478	La ₂ SeU ₂	-8.13889
19	BaS ₃	-4.95371	BayCuSe ₃	-5.4821	La ₂ SO ₆	-7.95241
20	LaAg ₂	-3.06689	BaYAgSe ₃	-5.28202	0 ₂	-5.14269
21	$\ln_2(SO_4)_3$	-6.31404	LaSO ₅	-7.18884	Ba ₂ In ₂ O ₅	-6.12921
22	Baln ₄	-3.21708	Sc ₂ S ₃	-7.23503	Ag	-1.64606
23	LaCu ₁₃	-2.8278	LaS	-7.09282	LaSe	-6.62074
24	Sc ₂ (SeO ₄) ₃	-6.67837	BaCu	-2.38677	BaO	-6.20053
25	Y ₅ S ₇	-7.55252	YAgSe ₂	-5.30327	La ₂ Cu(SeO ₃) ₄	-6.42915
26	ScS	-7.47639	Ag ₂ Se	-2.54178	LaCuSe ₂	-5.29228
27	LaCuS ₂	-5.72764	Ag ₃ O ₄	-3.69829	S	-4.39088
28	Ba ₃ In ₂ O ₆	-6.15612	La	-5.3462	La ₁₀ S ₁₉	-6.70236
29	BaCu(SeO ₃) ₂	-5.69116	Ba_2CuO_3	-5.65774	$In_2Se_2O_7$	-5./523
30		-6.95227	SC ₂ (SeU ₃) ₃	6.95932		-2.70645
32	ΥΔσ	-3 58113		-3.95268	BaS ₂	-5.08926
33	BaAg₌	-1.81549	La ₂ CuS ₄	-6.02146	La ₂ O ₂	-8.7395
34	YCuS ₂	-6.01493	La ₂ SO ₂	-8.31701	ScAg	-4.29051
35	YSe	-7.18956	In ₃ Cu ₇	-2.75803	ScCuO ₂	-7.34865
36	Cu ₇ S ₄	-3.5266	S ₈ O	-4.61868	In₅AgSe ₈	-3.85558
37	LaCu	-4.04102	BaYCuS ₃	-5.90815	InCuSe ₂	-3.78007
38	In ₂ S ₃	-4.40103	Ag ₂ SO ₄	-5.08389	InAg ₃	-2.01434
39	ScAg ₄	-2.76475	LaSe ₂	-6.14021	InAgS ₂	-3.82866
40	BaSO ₄	-6.88254	InCuS ₂	-4.13963	Ag ₂ O	-2.95711
41	Cuse	-3.0/064		-4.8634	AgU	-3.51608
42		-3.42332	$SCLUS_2$	-5.8/132	BaseO ₃	-6.26115
45	La ₄ Se ₃ O ₄	-7.79851	Balp	-3.03275		-5.00364
44		-3 50654		-6.66596		-3 29692
46	Ag ₂ SeO ₃	-4.39893	YCu ₂	-4.18365	$Y(CuO_2)_2$	-6.46098
47	BaSc ₂ O ₄	-8.53885	CuSO ₄	-5.76258	BaY ₂ O ₄	-8.59603
48	YAg	-4.44208	Sc ₂ O ₃	-9.39222	BaAg	-2.07645
49	LaCuSO	-6.54693	CuSe ₂	-3.5552	$Ba(YSe_2)_2$	-6.45466
50	ScAg ₂	-3.49669	La ₂ (SeO ₃) ₃	-6.876	YCu	-4.87659
51	Sc	-6.60553	BaSc₃AgS ₆	-6.33319	La ₂ CuO ₄	-7.50879
52	BaO ₂	-6.10381	La ₁₀ Se ₁₉	-6.20415	BaS	-5.35968
53	LaAg	-3.61635	YAgO ₂	-7.06044	Ba(CuO) ₂	-4.94118
54	InSe	-3.89542	BaS ₄ O ₁₃	-6.42946	Ва	-2.14891
55	Y ₂ SU ₂	-8.9/82		-5.99127	Base ₂ O ₅	-6.00657
56	125	-7.73259	Raraya2563			
_ J/	Ld223	-1.00103	1 SeU2	-ว.48985		

Table S1. List of competing phases used to calculate energy above hull for each of the target phases.

Figure S1. Diffraction pattern of the re-attempted synthesis of $Ba_3Y_2O_5Ag_2Se_2$, previously reported by Ogino et al. Pattern collected over 10 mins, longer scan times lead to appearance of degradation products due to air exposure. Data of insufficient quality to allow for refinement of structural parameters. However, a simplified Rietveld refinement was conducted, assuming the atomic positions matched house found in homologous $Ba_3Y_2O_5Cu_2Se_2$. This refinement confirmed the lattice parameters for $Ba_3Y_2O_5Ag_2Se_2$ as a = 4.42 Å and c = 28.38 Å.

Bond or Angle	$Ba_3Sc_2O_5Cu_2Se_2$	Ba ₃ Sc ₂ O ₅ Ag ₂ Se ₂	Ba ₃ In ₂ O ₅ Ag ₂ Se ₂	Ba ₃ Y ₂ O ₅ Cu ₂ Se ₂				
O-Ba- <i>Ch</i> angle / °	78.7(5)	77.4(2)	76.8(2)	74.6(9)				
M- <i>Ch</i> Bond / Å	3.503(34)	3.409(10)	3.413(4)	3.396(25)				
Ba-Ba distance, Oxide Block height / Å	7.892(5)	7.837(6)	7.990(4)	8.032(24)				
M-O equatorial bond / Å	2.107(2)	2.123(2)	2.147(2)	2.220(80)				
M-O axial bond /Å	1.990(8)	1.993(8)	2.051(2)	2.105(16)				
Ch Block height Å	2.872(35)	3.528(6)	3.512(4)	2.735(19)				
Ch-M'-Ch Angle / °	111.0(1)	100.2(1)	101.0(1)	116.2(6)				
M'-Ch bond length /°	2.536(2)	2.749(3)	2.760(2)	2.586(10)				
Table S2. Selected bond distances and angles derived from Rietveld refinement to X-ray powder diffraction patterns. $M = Sc$, In or Y; $M' = Cu$ or Ag; $Ch = S$ or Se. Also included are the heights of the chalcogenide and oxide blocks. Errors are two sigma.								

	E _{hull} (meV/atom)	a (= b) (Å)	c (Å)	α,β,γ (°)	Vol. (ų)	M-Ch-M (°)	Ba-Ba (Å)	Ba-O (Å)	M-O (Å)	Decomposes to
$\left[Cu_2S_2\right]\left[Ba_3Sc_2O_5\right]^*$	0	4.12	26.92	90	457.76	117.49	7.94	2.68, 2.92, 3.06	1.98, 2.08	
$[Cu_2S_2][Ba_3In_2O_5]^*$	0	4.18	27.19	90	476.06	119.62	8.13	2.69, 2.96, 3.16	2.08, 2.11	
$[Cu_2S_2][Ba_3Y_2O_5]^*$	46.2	4.34	26.48	90	498.31	124.55	8.06	2.70, 3.07, 3.25	2.13, 2.19	BaY ₂ O ₄ , BaSO ₄ , BaS, Cu
$[Cu_2S_2][Ba_3La_2O_5]^*$	131.6	4.49	27.18	90	547.9	130.68	8.61	2.73, 3.17	2.28, 2.32	BaO, BaSO ₄ , BaS, La ₂ O ₃ , Cu
$[Cu_2Se_2][Ba_3Sc_2O_5]$	0	4.16	27.49	90	476.5	112.99	7.88	2.69, 2.94, 3.06	1.97, 2.10	
$[Cu_2Se_2][Ba_3In_2O_5]^*$	0	4.20	27.73	90	494.95	114.91	8.04	2.70, 2.99, 3.16	2.07, 2.13	
$[Cu_2Se_2][Ba_3Y_2O_5]$	0	4.36	27.20	90	518.14	119.12	8.03	2.71, 3.09, 3.25	2.12, 2.20	
$[Cu_2Se_2][Ba_3La_2O_5]$	76.3	4.52	27.80	90	567.94	124.8	8.55	2.75, 3.2	2.30, 2.31	BaCu ₂ O ₂ , BaSe, La ₂ O ₃
$[Ag_2S_2][Ba_3Sc_2O_5]$	2.1	4.17	27.75	90	482.39	104.91	7.85	2.69, 2.95, 3.05	1.97, 2.10	BaSc ₂ O ₄ , BaSO ₄ , BaS, Ag
$[Ag_2S_2][Ba_3In_2O_5]$	8.5	4.23	27.96	90	499.82	106.96	8.03	2.70, 2.99, 3.16	2.08, 2.13	$Ba_2In_2O_5$, BaS, In_2O_3 , BaSO ₄ , Ag
$[Ag_2S_2][Ba_3Y_2O_5]$	45.7	4.37	27.36	90	523.64	111.64	7.98	2.71, 3.09, 3.24	2.13, 2.20	BaY ₂ O ₄ , BaSO ₄ , BaS, Ag
$[Ag_2S_2][Ba_3La_2O_5]$	120.5	4.54	27.91	90	575.75	117.62	8.45	2.75, 3.21	2.30, 2.30	BaO, BaSO ₄ , BaS, La ₂ O ₃ , Ag
$[Ag_2Se_2][Ba_3Sc_2O_5]$	0	4.20	28.43	90	501.88	101.64	7.81	2.69, 2.97, 3.06	1.97, 2.12	
$[Ag_2Se_2][Ba_3In_2O_5]$	0	4.26	28.59	90	519.51	103.56	7.97	2.70, 3.01, 3.15	2.07, 2.15	
$[Ag_2Se_2][Ba_3Y_2O_5]$	0	4.40	28.16	90	544.42	107.65	7.98	2.72, 3.11, 3.24	2.12, 2.21	
$[Ag_2Se_2][Ba_3La_2O_5]$	54.7	4.56	28.71	90	596.77	112.77	8.47	2.77, 3.22	2.29, 2.31	BaO, BaSeO ₃ , BaSe, La ₂ O ₃ , Ag

Table S3 Energy above the convex hull of the compositional phase diagram, cell lattice parameters, atomic distances and angles calculated for each compound using the PBEsol functional. * Results for these compounds are in agreement with previously reported values and are recalculated and included here for completeness.

Figure S2. Optical absorption plots calculated calculated using the real and imaginary parts of the dielectric constant calculated through a Kramers-Kronig transformation and a summation over the unoccupied bands, respectively.

Attempted Composition	Chi ²	Actual composition							
$Ba_3Y_2O_5Cu_2S_2$	1.49	Y ₂ O ₃ (22.4%)	BaS (31.7%)	Cu (17.0%)	BaSO ₄ (11.4%)	BaYO₄ (17.5 %)			
$Ba_3La_2O_5Cu_2S_2$	1.14	La ₂ O ₃ (33.6%)	BaS (28.2%)	Cu (21.8%)	BaSO ₄ (9.7%)	BaCO ₃ (6.6%)			
$Ba_3La_2O_5Cu_2Se_2$	1.69	La ₂ O ₃ (34.9%)	BaSe (26.4%)	Cu (38.7%)					
$Ba_3La_2O_5Ag_2Se_2$	1.39	La ₂ O ₃ (30.6%)	BaSe (55.9%)	Ag (11.9%)	BaCO₃ (3.3%)				
$Ba_3Sc_2O_5Ag_2S_2$	1.81	Sc ₂ O ₃ (20.7%)	BaS (49.0%)	Ag (15.5%)	BaSO4 (14.7%)				
$Ba_3In_2O_5Ag_2S_2$	1.23	In ₂ O ₃ (31.1%)	BaS (31.4%)	Ag (10.7%)	BaSO ₄ (21.2%)	$Ba_2 In_2 O_5$ (5.5%)			
$Ba_3Y_2O_5Ag_2S_2$	1.21	Y ₂ O ₃ (37.6%)	BaS (37.3%)	Ag (11.9%)	BaSO ₄ (13.2%)				
$Ba_3La_2O_5Ag_2S_2$	1.2	La ₂ O ₃ (38.0%)	BaS (38.8%)	Ag (13.5%)	BaSO₄ (9.6%)				

Table S4: Details of the refinement of the attempted compounds which could not be synthesized, and resultant composition, with Weight% of phases identified from Rietveld Refinement.

Formula	Γ –N / m _e		Γ –X / m _e	
$Ba_3Y_2O_5Cu_2Se_2$		0.46		0.5
Ba ₃ Sc ₂ O ₅ Cu ₂ Se ₂	N/A			0.45
$Ba_3Sc_2O_5Ag_2Se_2$		0.56		0.44
Ba ₃ In ₂ O ₅ Ag ₂ Se ₂		0.56		0.37

Table S5. Light hole effective masses for the newly
reported compounds, broken down by reciprocal space
direction. Appropriate Brillouin diagram can found at

<hr/>https://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-
kv-list?gnum=139&fig=f4ommig&what=data. k-point
coordinates in reciprocal space are:Γ: 0.0 0.0 0.0;Z: 0.5 0.5 -0.5;N: 0.0 0.5 0.0;
P: 0.25 0.25 0.25;X: 0.0 0.0 0.5