Electronic supplementary information

Enhanced blue TADF in D-A-D type naphthyridine derivative with asymmetric carbazole-donor motif

Dovydas Banevičius ${ }^{\text {a }}$, Gediminas Kreiza ${ }^{\text {a }}$, Rokas Klioštoraitis ${ }^{\text {a }}$, Saulius Juršènas ${ }^{\text {a }}$, Tomas Javorskisb, Vytenis Vaitkevičius ${ }^{\text {b }}$, Edvinas Orentas ${ }^{\text {b }}$, Karolis Kazlauskas*a E-mail: karolis.kazlauskas@ff.vu.lt
 10257 Vilnius, Lithuania
${ }^{b}$ Department of Organic Chemistry, Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko 24, Vilnius LT-03225, Lithuania

Synthesis and identification

All reagents and starting materials were obtained from commercial sources and used as received. Reaction solvents, dimethylformamide was distilled from CaH_{2}, THF was distilled from sodium/ benzophenone. All moisture-sensitive reactions were performed in oven-dried ($230^{\circ} \mathrm{C}$) glassware under an atmosphere of dry argon. Thin-layer chromatography was performed on Merck silica gel plates with QF-254 indicator. Visualization was accomplished with UV (254 nm). Column chromatography was performed using Merck silica 60 (40-63 $\mu \mathrm{m}$ particle size). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a NMR spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ and 101 MHz for ${ }^{13} \mathrm{C}$, respectively. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are referenced to residual solvent ($\mathrm{CDCl}_{3}, 7.29$ and 77.16 ppm for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, respectively). Chemical shifts are reported in ppm, and multiplicities are indicated by s (singlet), d (doublet), m (multiplet), and combinations thereof. HRMS was recorded on Bruker Daltonics microTOF-II spectrometer equipped with ESI ion source in positive mode or Brucker Autoflex speed MALDI TOF spectrometer.

3,3',6,6'-tetra-tert-butyl-9H-1,9'-bicarbazole 2 [1] and 2,7-dichloro-1,8-naphthyridine $\mathbf{3}$ [2] were synthesized according to literature.

Abbreviations: AcOH, acetic acid; n-BuLi, n-butyllithium; DCM, dichloromethane; DMF, dimethylformamide; dppp, 1,3-bis(diphenylphosphino)propane; EtOAc, ethyl acetate; PE, petrol ether ($40-60^{\circ} \mathrm{C}$ fraction); PhCl , chlorobenzene; THF, tetrahydrofuran.

Compound 4. To a solution of 3,3',6,6'-tetra-tert-butyl-9H-1,9'-bicarbazole 2 ($315 \mathrm{mg}, 0.566$ $\mathrm{mmol}, 2.1$ equiv.) in dry THF (10 ml) n-BuLi ($0.226 \mathrm{ml}, 2.5 \mathrm{M}, 2.1$ equiv.) was added dropwise at $78^{\circ} \mathrm{C}$. The reaction mixture was left to stir for 2 h at r.t. before adding 2,7 -dichloro-1,8naphthyridine 3 ($53 \mathrm{mg}, 0.269 \mathrm{mmol}, 1.0$ equiv.) in one portion. The vial was screw-capped and heated at $95^{\circ} \mathrm{C}$. After 96 h , the mixture was cooled to r.t., diluted with water and extracted with EtOAc. Purification by column chromatography on silica gel using gradient eluent system DCM/PE (1:6 to 2:1) afforded 165 mg (86%) of 4 as a light-yellow solid.
$\mathbf{R}_{\mathrm{f}}=0.6$ (1/10 EtOAc:PE).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.24(\mathrm{dd}, \mathrm{J}=28.4,1.9,2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.72$ - $7.65(\mathrm{~m}, 3 \mathrm{H})$, 7.50 (dd, J=8.8, 2.0, 1H), 7.33 (d, J=8.3, 2H), 7.26 (s, 1H), 7.12 (d, J=8.7, 2H), $6.77-6.66$ (m, 1H), 6.50 (d, J=8.4, 1H), 1.53 (s, 9H), 1.49 ($s, 9 H$), 1.35 ($s, 18 H$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.50,153.31,153.15,145.36,144.94,142.66,139.23,138.03$, 138.00, 135.22, 132.98, 129.49, 128.05, 124.98, 124.50, 123.97, 123.59, 123.23, 122.85, 122.33, $121.47,119.26,118.66,116.18,115.86,115.03,111.93,109.56,109.51,34.98,34.84,34.56$, $31.98,31.96,31.94,31.92,29.72,29.00,22.99,14.15$.

MS (MALDI-TOF) calc. for $\mathrm{C}_{48} \mathrm{H}_{51} \mathrm{ClN}_{4}$ (M): 718.38; Found: 718.39.

Compound DCz-ND-Cz. To a solution of 3,5-di-tert-butyl-carbazole (19 mg, $0.068 \mathrm{mmol}, 1.4$ equiv.) in dry THF (2.5 ml) NaH ($4.0 \mathrm{mg}, 0.097 \mathrm{mmol}, 60 \%$ dispersion in mineral oil, 2.0 equiv.) was added at once at room temperature. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 1 h , before adding 4 ($35 \mathrm{mg}, 0.049 \mathrm{mmol}, 1.0$ equiv.) in one portion. The vial was screw-capped and heated at $85^{\circ} \mathrm{C}$. After 86 h , the mixture was cooled to room temperature, diluted with water and extracted with EtOAc. Purification by column chromatography on silica gel using eluent EtOAc/PE (1:50) afforded 47 mg (88\%) of DCz-ND-Cz as a light-yellow glass.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.21(\mathrm{~d}, \mathrm{~J}=1.9,1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=2.0,1 \mathrm{H}), 8.07-7.98(\mathrm{~m}, 4 \mathrm{H}), 7.93$ (d, $J=8.7,1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=14.7,2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=1.9,1 \mathrm{H}), 7.45$ (ddd, J=8.8, 4.2, 2.0, 3H), 7.24 $(\mathrm{s}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.3,1 \mathrm{H}), 6.37(\mathrm{~d}, \mathrm{~J}=8.3,1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 36 \mathrm{H}), 1.16(\mathrm{~s}, 18 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.96,153.82,153.13,145.03,144.73,142.57,139.59,138.45$, $137.74,137.55,135.42,133.19,129.50,128.00,125.12,125.09,124.66,124.13,123.91,123.55$, 122.99, 121.30, 118.11, 117.74, 116.45, 116.24, 115.88, 115.74, 115.24, 112.56, 112.13, 109.48, $34.98,34.85,34.80,34.54,32.10,31.99,31.96,31.94$.
$\mathbf{R}_{\mathrm{f}}=0.34$ ($1 / 50 \mathrm{EtOAc}: P E$).
HRMS (ESI) calc. for $\mathrm{C}_{68} \mathrm{H}_{76} \mathrm{~N}_{5}(\mathrm{M}+\mathrm{H})$: 962.6095; Found: 962.6099.

Compound DCz-ND. A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}\left(7.8 \mathrm{mg}, 0.056 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.6 \mathrm{mg}$, $0.0027 \mathrm{mmol}, 0.05$ equiv), $\mathrm{Bu}_{4} \mathrm{NBr}(10 \mathrm{mg}, 0.031 \mathrm{mmol}, 0.55$ equiv) and $4(40 \mathrm{mg}, 0.056 \mathrm{mmol}$, 1.0 equiv) in dry DMF (2.0 ml) was stirred for few minutes at $115^{\circ} \mathrm{C}$. Isopropanol ($8.0 \mu \mathrm{l}$) was added and the mixture was remained at the above temperature for 32 h . The mixture was diluted with 1.0 M HCl and extracted with EtOAc. Purification by column chromatography on silica gel using eluent EtOAc/PE (1:4) afforded 14 mg (36\%) of DCz-ND as a light-yellow glass.
$\mathbf{R}_{\mathbf{f}}=0.29$ (1/4 EtOAc:PE).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.73(\mathrm{dd}, \mathrm{J}=4.0,1.9,1 \mathrm{H}), 8.25-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.7,1 \mathrm{H})$, 7.66 (d, J=8.0, 1H), 7.60 (d, J=1.7, 1H), 7.53 (s, 2H), 7.41 (dd, J=8.7, 1.9, 1H), 7.22 (d, J=8.6, 2H), $7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.5,2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.41$ ($\mathrm{s}, 9 \mathrm{H}$), $1.24(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.64,152.35,145.15,144.74,142.44,139.40,138.21,135.99$, $135.53,133.16,127.95,124.88,124.50,123.97,123.49,122.80,121.54,120.84,120.15,119.16$, $116.09,115.86,115.04,111.82,109.54,34.96,34.82,34.52,31.98,31.95,31.92,29.70$.

HRMS (ESI) calc. for $\mathrm{C}_{48} \mathrm{H}_{53} \mathrm{~N}_{4}(\mathrm{M}+\mathrm{H})$: 658.4265; Found: 658.4263.

Compound DCz-ND-DCz. To a solution of 2 ($47 \mathrm{mg}, 0.084 \mathrm{mmol}, 2.0$ equiv) in dry THF (), NaH (5.0 $\mathrm{mg}, 0.13 \mathrm{mmol}, 60 \%$ dispersion in mineral oil, 3.0 equiv) was added at once. The mixture was stirred at room temperature for 2 h , then 4 ($30 \mathrm{mg}, 0.042 \mathrm{mmol}, 1.0$ equiv) was added. The mixture was heated at $90^{\circ} \mathrm{C}$ for 48 h , cooled to room temperature, diluted with 1.0 M HCl and extracted with EtOAc. Purification by column chromatography on silica gel using gradient eluent system DCM/PE (1:6 to 2:1) afforded 21 mg (40\%) of DCz-ND-DCz as a light-yellow glass.
$\mathbf{R}_{\mathrm{f}}=0.55$ ($1 / 10 \mathrm{EtOAc}: P E$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.67(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 8.18(\mathrm{dd}, \mathrm{J}=25.8,1.9,4 \mathrm{H}), 7.82$ (dd, J=8.6, 5.6, 4 H), 7.61 (d, J=1.8, 5H), 7.47 (dd, J=8.7, 2.0, 3H), 7.24-7.17 (m, 4H), 7.08 (d, J=8.7, 4H), 6.83 (d, $J=8.4,2 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=8.3,2 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}), 1.18(\mathrm{~s}, 36 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.54,152.57$, 145.09, 144.70, 142.48, 139.59, 138.29, 136.38, $135.56,133.23,127.87,124.92,124.52,123.92,123.39,121.49,120.73,120.31,119.43,116.11$, 115.86, 115.28, 111.64, 109.45, 34.97, 34.84, 34.45, 31.97, 31.93, 31.86, 29.70, 29.36, 22.69, 14.12, 1.03.

HRMS (ESI) calc. for $\mathrm{C}_{88} \mathrm{H}_{99} \mathrm{~N}_{6}(\mathrm{M}+\mathrm{H}):$ 1239.7926; Found: 1239.7926.

Copies of NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR of $4\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR of $4\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR of DCz-ND-Cz (CDCl $\left.3,400 \mathrm{MHz}\right)$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR of DCz-ND-Cz $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{D C z}-\mathrm{ND}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR of DCz-ND ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$).

Figure S7. ${ }^{1} \mathrm{H}$ NMR of DCz-ND-DCz $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR of DCz-ND-DCz ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$).

X-Ray Crystallography

Single crystals of investigated naphthyridines were grown by slow evaporation of solvent/antisolvent mixtures. Suitable crystals were mounted on a microloop (MiTeGen) and analyzed on a XtaLab Synergy diffractometer equipped with HyPix-6000HE hybrid photon counting detector and PhotonJet microfocus X-ray source (CuK $\alpha, \lambda=1.54184$). Diffraction experiments were carried out at 100.0 K using Oxford Cryostream 800 cooling system. Data were collected and processed with CrysAlisPro software. The structure was solved by Intrinsic Phasing with the ShelXT [3] program and refined with the ShelXL [4] package using Least Squares minimization as implemented in Olex2 graphical interface [5]. Due to the co-crystallization of highly disordered solvent molecules in DCz-ND and DCz-ND-DCz crystals, solvent masking was applied during the structure refinement. The structure files DCz-ND, DCz-ND-Cz and DCz-ND-DCz crystals were deposited with the Cambridge Crystallographic Data Centre and can be accessed free of charge (CCDC deposition numbers: 2113723, 2113744 and 2113780, respectively).

Table S1. Crystallographic data of naphthyridine derivatives.

Compound	DCz-ND	DCz-ND-Cz	DCz-ND-DCz
CCDC deposition number	2113723	2113744	2113780
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{~N}_{4}$	$\mathrm{C}_{68} \mathrm{H}_{75} \mathrm{~N}_{5}$	$\mathrm{C}_{88} \mathrm{H}_{98} \mathrm{~N}_{6}$
Formula weight	684.93	962.33	1239.72
Temperature/K	100.00(10)	100.00(10)	100.00(10)
Crystal system	monoclinic	triclinic	monoclinic
Space group	P2 ${ }_{1}$	P-1	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	12.72429(16)	12.69725(17)	24.3736(3)
b/Å	24.1867(2)	17.0233(3)	22.3138(3)
c/Å	14.22098(19)	28.0493(4)	31.3310(5)
$\alpha /{ }^{\circ}$	90	76.7216(12)	90
$\beta /{ }^{\circ}$	108.7464(14)	81.3818(12)	97.1858(11)
$\mathrm{y} /{ }^{\circ}$	90	78.1997(12)	90
Volume/Å ${ }^{3}$	4144.45(9)	5742.26(15)	16906.1(4)
Z	4	4	8
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	$1.098+$ solvent	1.113	0.974 + solvent
Crystal size/mm ${ }^{3}$	$0.171 \times 0.083 \times 0.03$	$0.231 \times 0.057 \times 0.043$	$0.18 \times 0.07 \times 0.033$
2Θ range for data collection	6.564 to 153.65°	5.42 to 155.04°	4.874 to 155.388°
Index ranges	$\begin{aligned} & -14 \leq h \leq 15,-29 \leq k \leq \\ & 30,-17 \leq 1 \leq 17 \end{aligned}$	$\begin{aligned} & -15 \leq \mathrm{h} \leq 16,-21 \leq \mathrm{k} \leq \\ & 21,-33 \leq \mathrm{l} \leq 34 \end{aligned}$	$\begin{aligned} & -28 \leq h \leq 30,-27 \leq k \leq \\ & 27,-39 \leq 1 \leq 39 \end{aligned}$
Reflections collected	56243	87555	110834
Independent reflections	16763[R(int) $=0.0351$]	23628[R(int) $=0.0316$]	34596[R(int) $=0.0485$]
Data/restraints/parameters	16763/1/962	23628/0/1382	34596/6/1914
Goodness-of-fit on F^{2}	1.030	1.037	1.027
Final R indexes [l>=2 ${ }^{\text {(}} \mathrm{I}$]	$\begin{aligned} & R_{1}=0.0511 \\ & w R_{2}=0.1316 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0512, \\ & w \mathrm{R}_{2}=0.1309 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0630, \\ & \mathrm{wR}_{2}=0.1535 \\ & \hline \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0530 \\ & w \mathrm{R}_{2}=0.1330 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{1}=0.0603 \\ & w R_{2}=0.1368 \\ & \hline \end{aligned}$	$\begin{aligned} & R_{1}=0.0906 \\ & w R_{2}=0.1670 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.56/-0.26	0.69/-0.31	0.72/-0.34
Solvents used	DCM/Methanol	IPA/DMSO	IPA/DMF

Solvatochromism studies

Solvent dependent spectral shifts were analyzed in terms of the Lippert equation,
$\Delta v=v_{a b s}-v_{f l}=\frac{2\left(\mu_{e}-\mu_{g}\right)^{2}}{h c a^{3}} * \Delta f+$ const.

Here $v_{a b s} v_{f l}$ is the Stokes' shift in wavenumbers determined from absorption and fluorescence spectra; μ_{e} and ${ }^{\mu_{g}}$ are dipole moments of the ground and excited states; h is a Planck constant; c - velocity of light; a - cavity radius in which a fluorophore resides.

Solvent orientation polarizability (Δf) is described by refractive index (n) and static dielectric constant (ε).
$\Delta f=\frac{\varepsilon-1}{2 \varepsilon+1}-\frac{n^{2}-1}{2 n^{2}+1}$.

Absorption and fluorescence spectra of naphthyridines in different solvents (Fig. S9) were used to obtain Lippert-Mataga plots (Fig. S10). The increase of dipole moments ($\mu_{\mathrm{e}}-\mu_{\mathrm{g}}$) in the excited state compared to the ground state for DCz-ND, DCz-ND-Cz and DCz-ND-DCz was estimated to be 40.6 D, 53.0 D and 58.1 D, respectively. However, different dynamics of the Stokes shifts with increasing solvent orientation polarizability (Δf) can be determined by different excited state relaxation mechanisms in different compounds as well as by other effects. E.g., unlike the other two compounds, DCz-ND-Cz demonstrates a blue shift of absorption spectrum with increasing Δf likely associated with ground state geometry changes. DCz-ND-DCz, which has the most heavily shielded naphthyridine acceptor (by the bulky donor groups) exhibits weaker solvation of the excited state. Thus, in fact, the data obtained from Lippert-Mataga plots are not well suited to directly compare the compounds and disclose the effect of asymmetric donor motif. Nonetheless, these studies revealed that DCz-ND-Cz displays well-structured FL spectrum in nonpolar cyclohexane solvent, which gradually transforms to broad and structureless ICT-like FL spectrum with increasing solvent polarizability. We believe that the latter results provide a support for the existence of close lying CT and LE states ensuring high RISC rate in asymmetric DCz-ND-Cz compound.

Figure S9. Absorption and fluorescence spectra of the studied naphthyridine derivatives in different solvents. Absorption spectra of the compounds in DPEPO host are shown for reference.

Figure S10. Lippert-Mataga plots of the studied naphthyridine derivatives in different solvents showing the variation of Stokes shift as a function of solvent orientation polarizability.

References

[1] A.W. Jones, C.K. Rank, Y. Becker, C. Malchau, I. Funes-Ardoiz, F. Maseras, F.W. Patureau, Accelerated Ru-Cu Trinuclear Cooperative C-H Bond Functionalization of Carbazoles: A Kinetic and Computational Investigation, Chem. - A Eur. J. 24 (2018) 15178-15184. https://doi.org/10.1002/CHEM. 201802886.
[2] G.R. Newkome, S.J. Garbis, V.K. Majestic, F.R. Fronczek, G. Chiarilc, Chemistry of Heterocyclic Compounds. 61. Synthesis and Conformational Studies of Macrocycles Possessing 1,8- or 1,5-Naphthyridino Subunits Connected by Carbon-Oxygen Bridges, J. Org. Chem. 46 (1981) 833-839. https://doi.org/10.1021/jo00318a001.
[3] G.M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A Found. Crystallogr. 71 (2015) 3-8. https://doi.org/10.1107/S2053273314026370.
[4] G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem. 71 (2015) 3-8. https://doi.org/10.1107/S2053229614024218.
[5] O. V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2 : a complete structure solution, refinement and analysis program, J. Appl. Crystallogr. 42 (2009) 339-341. https://doi.org/10.1107/S0021889808042726.

