Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Cage-Incorporation of Secondary Amine in Ruddlesden-Popper 2D Hybrid Perovskite with Strong Photoconductivity and Polarization Response

Beibei Wang,^a Huaixi Chen,^b Wuqian Guo,^b Yi Liu,^b Shiguo Han,^b Lina Hua,^b Liwei Tang,^b Junhua Luo^b and Zhihua Sun^{*a, b, c}

^{a.} College of Chemistry, Fuzhou University, Fuzhou 350116, China

^{b.} State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

^{c.} Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

E-mail: sunzhihua@fjirsm.ac.cn.

Figure S1. Experimental and calculated powder X-ray diffraction patterns of 1 at room temperature.

Figure S2. Optical absorption spectrum (Inset: the calculated bandgap) of (BA)₂PbBr₄.

Figure S3: *I*–*V* traces of **1** measured under different wavelength.

Figure S4. Detectivity D^* and responsivity R of the single crystal of 1 under changed incident light power.

Figure S5. Polarization-dependent photocurrents.

Figure S6. Thermal analysis of 1 showing its thermal stability up to ~485 K.

Table S1 Crystal data and structure refinement for 1.					
Empirical formula	$C_{10}H_{32}Br_7N_3Pb_2$				
Formula weight	1168.13				
Temperature/K	300.0				
Crystal system	monoclinic				
Space group	C2/m				
a/Å	8.379(3)				
b/Å	8.498(2)				
<i>c</i> /Å	20.187(8)				
α/°	90				
6/°	101.917(13)				
γ/°	90				
Volume/ų	1406.5(8)				
Z	2				
ρ _{calc} g/cm ³	2.758				
μ/mm ⁻¹	21.898				
F(000)	1044.0				
Radiation	ΜοΚα (λ = 0.71073)				
2θ range for data collection/°	6.906 to 49.984				
Index ranges	$-9 \le h \le 9$, $-10 \le k \le 10$, $-24 \le l \le 24$				
Reflections collected	15109				
Independent reflections	1316 [R _{int} = 0.0893, R _{sigma} = 0.0454]				
Data/restraints/parameters	1316/95/105				
Goodness-of-fit on F ²	1.093				
Final R indexes [I>=2 σ (I)]	R ₁ = 0.0757, wR ₂ = 0.2239				
Final R indexes [all data]	$R_1 = 0.0812$, $wR_2 = 0.2313$				
Largest diff. peak/hole / e Å ⁻³	1.72/-2.97				

Tables

Table S2 Bond Lengths for 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Pb ⁽¹⁾	Br ⁽³⁾	2.847(2)	Br ⁽³⁾	Br ⁽³⁾¹	0.964(4)
Pb ⁽¹⁾	Br ⁽³⁾¹	2.847(2)	N ⁽²⁾	C ⁽⁶⁾	1.509(12)
Pb ⁽¹⁾	Br ⁽²⁾²	2.9864(11)	C ⁽⁶⁾	C ⁽⁵⁾	1.493(10)
Pb ⁽¹⁾	Br ⁽²⁾³	2.9864(11)	C ⁽⁵⁾	C ⁽⁴⁾	1.488(12)
Pb ⁽¹⁾	Br ⁽²⁾	2.9855(11)	C ⁽⁴⁾	C ⁽³⁾	1.502(13)
Pb ⁽¹⁾	Br ⁽²⁾¹	2.9855(11)	C ⁽²⁾	N ⁽¹⁾	1.497(13)
Pb ⁽¹⁾	Br ⁽¹⁾	3.1901(13)	N ⁽¹⁾	C ⁽¹⁾	1.502(13)

¹+X, 1-Y, +Z; ²1/2+X, 1/2-Y, +Z; ³1/2+X, 1/2+Y, +Z

Table S3 Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Br ⁽³⁾	Pb ⁽¹⁾	Br ⁽³⁾¹	19.50(8)	Br ⁽²⁾¹	Pb ⁽¹⁾	Br ⁽²⁾³	89.10(2)
Br ⁽³⁾	Pb ⁽¹⁾	Br ⁽²⁾²	80.91(7)	Br ⁽²⁾	Pb ⁽¹⁾	Br ⁽²⁾²	89.10(2)
Br ⁽³⁾	Pb ⁽¹⁾	Br ⁽²⁾	80.76(7)	Br ⁽²⁾³	Pb ⁽¹⁾	Br ⁽²⁾²	90.69(4)
Br ⁽³⁾¹	Pb ⁽¹⁾	Br ⁽²⁾	94.62(7)	Br ⁽²⁾¹	Pb ⁽¹⁾	Br ⁽¹⁾	92.30(3)
Br ⁽³⁾¹	Pb ⁽¹⁾	Br ⁽²⁾³	80.91(7)	Br ⁽²⁾²	Pb ⁽¹⁾	Br ⁽¹⁾	92.21(3)
Br ⁽³⁾	Pb ⁽¹⁾	Br ⁽²⁾¹	94.62(7)	Br ⁽²⁾	Pb ⁽¹⁾	Br ⁽¹⁾	92.30(3)
Br ⁽³⁾¹	Pb ⁽¹⁾	Br ⁽²⁾²	94.76(7)	Br ⁽²⁾³	Pb ⁽¹⁾	Br ⁽¹⁾	92.21(3)
Br ⁽³⁾	Pb ⁽¹⁾	Br ⁽²⁾³	94.76(7)	Br ⁽³⁾¹	Br ⁽³⁾	Pb ⁽¹⁾	80.25(4)
Br ⁽³⁾¹	Pb ⁽¹⁾	Br ⁽²⁾¹	80.77(7)	Pb ⁽¹⁾	Br ⁽²⁾	Pb ⁽¹⁾⁴	175.49(6)
Br ⁽³⁾¹	Pb ⁽¹⁾	Br ⁽¹⁾	170.25(4)	Pb ⁽¹⁾⁵	Br ⁽¹⁾	Pb ⁽¹⁾	180.0
Br ⁽³⁾	Pb ⁽¹⁾	Br ⁽¹⁾	170.25(4)	C ⁽⁵⁾	C ⁽⁶⁾	N ⁽²⁾	112.2(11)
Br ⁽²⁾	Pb ⁽¹⁾	Br ⁽²⁾³	175.49(6)	C ⁽⁴⁾	C ⁽⁵⁾	C ⁽⁶⁾	114.2(10)
Br ⁽²⁾¹	Pb ⁽¹⁾	Br ⁽²⁾²	175.49(6)	C ⁽⁵⁾	C ⁽⁴⁾	C ⁽³⁾	116.6(11)
Br ⁽²⁾	Pb ⁽¹⁾	Br ⁽²⁾¹	90.75(4)	C ⁽²⁾	N ⁽¹⁾	C ⁽¹⁾	113.6(15)

¹+X, 1-Y, +Z;² 1/2+X, 1/2-Y, +Z; ³1/2+X, 1/2+Y,+Z; ⁴-1/2+X, -1/2+Y, +Z; ⁵1-X, 1-Y, 1-Z

 Table S4 N-H…Br Hydrogen bonds of 1 at 300 K.

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>Α</th></dha<>	d(DA)	Α
N1ª-H1Bª	0.890	2.728	169.77	3.607	Br1 [x-1, y, z]
N2 ^a -H2A ^a	0.890	2.641	128.50	3.270	Br3 [x+1/2, y-1/2, z]
N2 ^a -H2A ^a	0.890	1.689	131.93	2.378	Br3 [x+1/2, -y+1/2, z]
N2 ^a -H2B ^a	0.890	2.187	152.62	3.006	Br2 [x+1/2, -y+1/2, z]
N2 ^a -H2C ^a	0.890	1.760	137.34	2.489	Br2 [x+1, y, z]

Table S5	Absorption	cutoff	wavelengths,	bandgaps	and P	L peak	position	of 1 ,	(DMA)PbBr ₃ ,	(DMA) ₇ Pb ₄ Br ₁₅	5 and
(BA) ₂ PbBr	4.										

Compound	Absorption cutoff wavelength (nm)	Bandgap (eV)	PL peak
1	466	2.67	at 467 nm
(DMA)PbBr ₃	425	3.0	at 620 nm
(DMA) ₇ Pb ₄ Br ₁₅	425	2.8	at 438 nm
(BA) ₂ PbBr ₄	439	2.83	at 411 nm ^[1]

L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg,
 L.-W. Wang, A. P. Alivisatos and P. Yang, *Science*, 2015, **349**, 1518-1521.

	Responsivity (mA W ⁻¹)	Detectivity (Jones)	Response time	Ref	
Ourwork	21.1	2.0×10^{11}	τ _{rise} = 20 μs		
	51.1	2.0 ^ 10	$ au_{ m decay}$ = 8 μ s		
	12.01	2.2 × 1011	τ _{rise} = 320 μs	[1]	
(BA) ₂ (GA)PD ₂ I ₇	12.01	3.3 × 10	τ _{decay} = 315 μs		
	12.1	1 OF v 1011	<i>τ_{rise}</i> = 310 μs	[2]	
	12.1	1.05 × 10	τ _{decay} = 370 μs	[2]	
		2 6 × 10 ¹⁰	τ _{rise} = 150 μs	[2]	
(C4H9INH3/2(IVIA)2PD3DI 10		5.0 × 10	τ _{decay} = 570 μs	[ວ]	
(C ₄ H ₉ NH ₃) ₂ (CH ₃ NH ₃)Pb ₂ I ₇	7.3			[4]	
(C ₄ H ₉ NH ₃) ₂ PbI ₄	3.0			[4]	
	2.0	2.0 4.010	τ _{rise} = 1.52 μs	(-)	
(C ₅ H ₁₁ NH ₃) ₂ (CH ₃ NH ₃)PD ₂ I ₇	3.8	2.9 × 10 ¹⁰	τ _{decay} = 1.67 μs	[5]	
		1 1 1010	τ _{rise} = 20 μs	[6]	
$[CH_3(CH_2)_3NH_3]_2(CH_3NH_3)PD_2Br_7$		1.1 × 10-°	τ _{decay} = 28 μs		
	1 25	1.16×10^{9}	τ _{rise} = 96 μs	[7]	
(CA)2(IVIA)2PD3BI10	1.35	1.10 × 10 ³	τ_{decay} = 123 µs	[/]	
	0.16	$E_{0} \times 10^{10}$	$\tau_{\rm rise}$ = 40 ms	[0]	
	0.10	3.0 × 10-°	τ_{decay} = 40 ms	[8]	

 Table S6 Figure-of-merits for some photodetectors based on 2D perovskites.

[1] L. Lu, Y. Ma, J. Wang, Y. Liu, S. Han, X. Liu, W. Guo, H. Xu, J. Luo and Z. Sun, *Chem. Eur. J.*, 2021, 27, 9267-9271.
[2] Y. Liu, Z. Wu, X. Liu, S. Han, Y. Li, T. Yang, Y. Ma, M. Hong, J. Luo, and Z. Sun, *Adv. Opt Mater.*, 2019, 7, 1901049-1901054.

[3] L. Li, Z. Sun, P. Wang, W. Hu, S. Wang, C. Ji, M. Hong, J. Luo, *Angew. Chem. Int. Ed.*, 2017, 56, 12150 -12154
[4] J. Zhou, Y. Chu and J. Huang, *ACS Appl. Mater. Inter.*, 2016, 8, 25660-25666.

[5] S. Han, P. Wang, J. Zhang, X. Liu, Z. Sun, X. Huang, L. Li, C. Ji, W. Zhang, B. Teng, W. Hu, M. Hong and J. Luo, *Laser Photonics Rev.*, 2018, **12**, 1800060.

[6] L. Li, X. Liu, Y. Li, Z. Xu, Z. Wu, S. Han, K. Tao, M. Hong, J. Luo and Z. Sun, *J. Am. Chem. Soc.*, 2019, **141**, 2623-2629.

[7] X. Liu, S. Wang, P. Long, L. Li, Y. Peng, Z. Xu, S. Han, Z. Sun, M. Hong, J. Luo, Angew. Chem. Int. Ed., 2019, 58, 14504.–14508

[8] I.-H. Park, K. C. Kwon, Z. Zhu, X. Wu, R. Li, Q.-H. Xu and K. P. Loh, J. Am. Chem. Soc., 2020, 142, 18592-18598.