Electronic Supplementary Information

Journal of Materials Chemistry C

Implications of Gas-Barrier Properties in Realizing the Self-Recovery of Photodegraded CsPbBr₃ Perovskite Nanocrystals

Ikumi Enomoto, Yoshiki Iso* and Tetsuhiko Isobe*

Department of Applied Chemistry, Faculty of Science and Technology, Keio

University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

*Corresponding Authors:

Yoshiki Iso – E-mail: iso@applc.keio.ac.jp; Tel.: +81 45 566 1558; Fax: +81 45

566 1551; orcid.org/0000-0001-7483-2828

Tetsuhiko Isobe – E-mail: isobe@applc.keio.ac.jp; Tel.: +81 45 566 1554; Fax:

+81 45 566 1551; orcid.org/0000-0002-0868-5425

Experimental section

Materials

Cs₂CO₃ (99.99%, Mitsuwa Pure Chemical), PbBr₂ (99%, Mitsuwa Pure Chemical), granular EVA polymer (Evaflex EV150, Du Pont-Mitsui Polychemicals), and 15µm-thick EVOH film (EVAL EF-XL, Kuraray) were used as received without further purification. 1-Octadecene (>90.0%, Tokyo Chemical Industry), oleic acid (>85.0%, Tokyo Chemical Industry), oleylamine (80%–90%, Acros Organics), tertbutanol (>99.0%, Tokyo Chemical Industry), and toluene (>99.5%, Kanto Chemical) were dehydrated over molecular sieves (3A 1/8, FUJIFILM Wako Pure Chemical) prior to use.

Preparation of Cs-oleate precursor

Cs₂CO₃ (2.50 mmol) was added into a mixture of 1-octadecene (40.0 mL) and oleic acid (2.5 mL). The mixture was dried for 1 h at 120 °C and then heated under Ar gas to 150 °C until the Cs₂CO₃ completely dissolved. The Cs-oleate precursor was preheated to 100 °C before injection.

Synthesis of CsPbBr₃ NCs

A mixture of 1-octadecene (5.0 mL) and PbBr₂ (0.376 mmol) was vacuum dried for 1 h at 120 °C and then purged with Ar gas. Oleylamine (1.0 mL) and oleic acid (1.0 mL) were added to the mixture, followed by heating to 180 °C. Once the PbBr₂ was completely dissolved, the preheated Cs-oleate precursor was rapidly injected, and 10 s later, the resulting crude CsPbBr₃ NC solution was cooled in an ice-water bath and were aggregated by adding tert-butanol (25.0 mL). Then, the NCs were collected by centrifugation at ~19,000 ×g (13,000 rpm using a rotor with a diameter of 10 cm) for 5 min. After vacuum drying for 1 d, a paste-like NC material was obtained.

Preparation of EVA film

Granular EVA (200 mg) was completely dissolved in toluene (20 mL) under vigorous stirring. Then, 4 mL of the obtained solution was dropped onto a Petri dish with a diameter of 5.8 cm and dried for half a day in an electric desiccator to fabricate an EVA film. The resulting film with a thickness of ~14 μ m was cut into a square (25 mm × 25 mm).

Preparation of CsPbBr₃ NCs films

Silicone rubber film (25 mm \times 25 mm \times 0.5 mm) with a square hole (5 mm \times 5 mm) was placed on a soda-lime glass plate (25 mm \times 25 mm \times 1 mm) to prepare a film mold (see Fig. S1), which was filled with the paste-like CsPbBr₃ NCs and sealed with a soda-lime glass plate, EVA film, or EVOH film to shut out ambient air. As a reference, an NC film exposed to ambient air was also prepared.

Blue LED irradiation of NC films

The NC films were irradiated using a flat panel blue LED (TE-4556, Nissin Electronics) equipped with a power supply (LPR-10W, Nissin Electronics) for 72 h. The luminescence wavelength and irradiance were 468 nm and 48.5 W m⁻², respectively. The irradiated sample was stored in the dark. A series of these experiments was performed with thermo-hygrostat (IG401, Yamato Scientific) which was set at 25 °C and 60% relative humidity. Herein, sample temperature was evaluated by a thermography camera (TG167, FLIR). Only a slight increase in temperature was observed after LED irradiation for 24 h, as shown in Fig. S2; therefore, heating by LED irradiation in this research is negligible.

Characterization

XRD profiles were obtained with an X-ray diffractometer (Rint-2200, Rigaku) equipped with a Cu K α radiation source and a monochromator. UV–Vis absorption spectra of dispersion and film samples were measured using UV/visible/near-infrared optical absorption spectrometers (V-750 and V-570, JASCO). The Tauc plot was prepared according to Eq. S1 to determine the E_g of the NCs [S1].

$$(\alpha h\nu)^{\frac{1}{n}} = A(h\nu - E_{\rm g}) \tag{S1}$$

where α is absorbance, *h* is the Planck constant, *v* is frequency, and *A* is a constant. The value of *n* was 0.5 because CsPbBr₃ is a direct transition-type semiconductor [S2].

PL spectra were measured using a fluorescence spectrometer (FP-8500, JASCO). The obtained spectra were calibrated using a calibrated detector (SID-844, JASCO). PL decay curves were recorded with a fluorescence lifetime spectrometer (Quantaurus-Tau C11367, Hamamatsu Photonics) equipped with 405-nm LEDs as the light source. The PL decay curves were fitted with the following triexponential equation:

$$f(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + A_3 \exp\left(-\frac{t}{\tau_3}\right)$$
(S2)

where A_1 , A_2 , and A_3 are the amplitudes, and τ_1 , τ_2 , and τ_3 are the PL lifetimes. The

average PL lifetime $<\tau>$ was calculated using Eq. S3.

$$\langle \tau \rangle = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$
(S3)

The particle morphologies were observed using a field-emission transmission electron microscope (Tecnai G², FEI). TEM samples were prepared by vacuum drying a drop of NC dispersion on carbon-reinforced collodion-coated copper grids (COL-C10, Oken Shoji) overnight. XPS spectra were measured on an XPS instrument (JPS-9010TR, JEOL) equipped with an Al K α radiation source. The peak of C 1s at 285.0 eV was used for the charge-up correction.

References

- S1) J. Tauc and A. Menth, J. Non-Cryst. Solids, 1972, 8-10, 569-585.
- S2) L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, *Nano Lett.*, 2015, 15, 3692–3696.

Fig. S1 Schematic structure of a CsPbBr3 film.

Fig. S2 Thermography images of the prepared CsPbBr₃ NCs films before and after LED irradiation for 24 h. CsPbBr₃ NCs are centered in the dotted area of a glass plate (25 mm \times 25 mm).

Fig. S3 XRD profile of as-prepared CsPbBr₃ NCs. ICDD card data of representative phases of CsPbBr₃ are also shown.

Fig. S4 TEM image of as-prepared CsPbBr3 NCs.

Fig. S5 (a) UV–vis absorption and PL spectra of CsPbBr₃ NCs in toluene. $\lambda_{ex} = 400$ nm. (b) Tauc plot derived from the UV–vis spectrum.

Fig. S6 PL decay curves for the EVOH- and EVA-coated CsPbBr3 NCs films before

and after 72 h irradiation and after 168 h dark storage. $\lambda_{ex}=405$ nm.

		Average PL lifetime (ns) Amplitude (%)							2
		$<_{\mathcal{I}}>$	$ au_1$	$ au_2$	$ au_3$	A_1	A_2	A_3	χ
EVOH-coated	As-prepared	27.8	3.7	13.0	57.2	53.5	39.3	7.3	1.05
	72 h irradiated	11.1	1.5	5.1	26.7	68.4	27.3	4.3	1.24
EVA-coated	168 h stored	29.9	3.1	12.9	63.6	60.8	33.4	5.8	1.23
	As-prepared	35.3	3.7	14.6	76.7	63.4	31.3	5.3	1.11
	72 h irradiated	57.0	2.1	12.7	103.3	74.0	21.7	4.3	1.35
	168 h stored	58.3	2.5	14.6	96.4	70.2	23.1	6.7	1.26

Table S1 Summary of PL lifetimes estimated from Fig. S6.

Fig. S7 TEM images of the prepared CsPbBr₃ NCs films before and after 72 h irradiation. The glass-coated NCs film upon subsequent 168 h dark storage is also shown.

Fig. S8 XRD profiles of the prepared CsPbBr₃ NCs films before and after 72 h irradiation. ICDD card data of representative phases of CsPbBr₃ are also shown.

Fig. S9 Deconvolution of the Pb 4f XPS peaks for an EVA-coated NC film irradiated for 72 h. Peak fitting for the as-prepared CsPbBr₃ NCs is also shown.