Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Energy transfer processes in hyperfluorescent

organic light-emitting diodes

Eunkyung Cho,¹ Minki Hong,² Yu Seok Yang,³ Yong Joo Cho,³ Veaceslav Coropceanu,^{1*} and Jean-Luc Brédas^{1*}

¹Department of Chemistry and Biochemistry The University of Arizona Tucson, Arizona 85721-0088

² Kyulux North America, Inc.
50 Milk Street
Boston, Massachusetts 02109

³ Kyulux, Inc.
4-1 Kyudai-Shinmachi, Nishi-ku Fukuoka, 819-0388, Japan

* Email: coropceanu@arizona.edu; jlbredas@arizona.edu

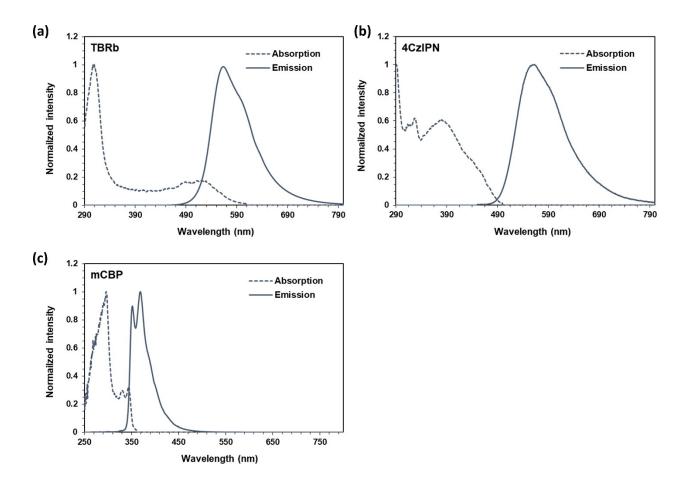
Content

Experimental details

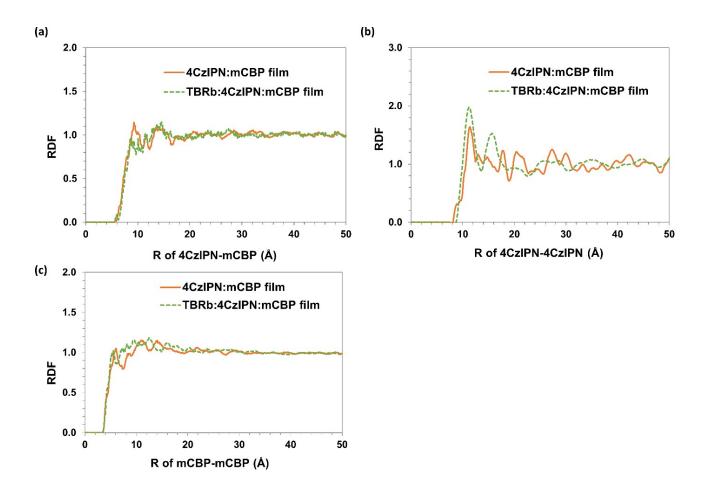
Figure S1. Experimental absorption (dashed line) and emission (solid line) spectra of (a) TBRb,(b) 4CzIPN, and (c) mCBP thin films.S3

Figure S2. Radial distribution functions (RDFs) of (a) 4CzIPN-mCBP pairs, (b) 4CzIPN-4CzIPN pairs, and (c) mCBP-mCBP pairs in binary 4CzIPN:mCBP and ternary TBRb:4CzIPN:mCBP films as a function of intermolecular center-of-mass distance (R).

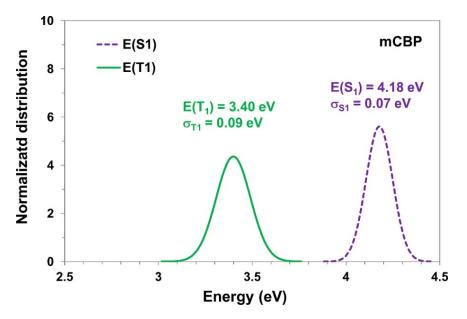
Figure S3. Normalized distributions of singlet (S, dashed line) and triplet (T, solid line) excitedstate energies in mCBP, evaluated for molecules extracted from MD trajectories in the TBRb:4CzIPN:mCBP blend.


Figure S4. Normalized distributions of the energy differences ΔE_{S1T1} in TBRb (a) and 4CzIPN (b); the energy differences ΔE_{S1T2} in TBRb (c); and the SOC values between the S₁ and T₁ states in TBRb (d), evaluated for molecules extracted from MD trajectories in the TBRb:4CzIPN:mCBP blend.

2


S3

Experimental details


All chemicals were purchased from commercial sources and used with further purification. All thin-film samples were thermally evaporated under high vacuum pressure on quartz substrate. UV-visible absorption spectra of the thin films were performed with a Perkin-Elmer Lambda 950-PKA spectrometer in the range of 290-800 nm. The photoluminescence spectra of the thin films were measured with a FluoroMax-4 Horiba Jobin Yvon spectrofluorometer.

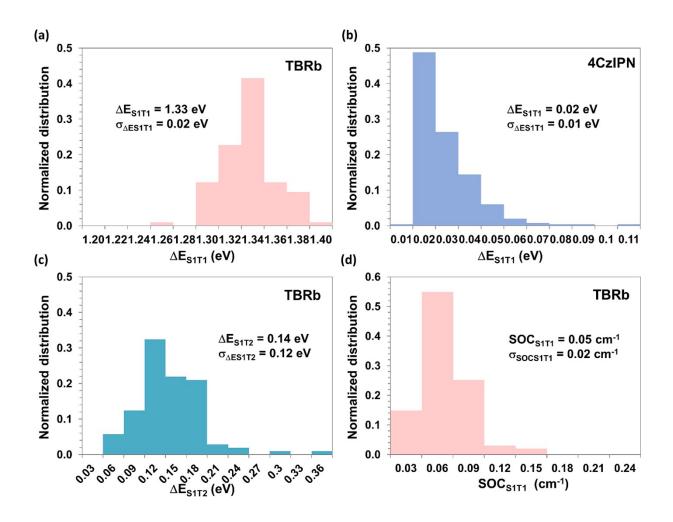

Figure S1. Experimental absorption (dashed line) and emission (solid line) spectra of (a) TBRb, (b) 4CzIPN, and (c) mCBP thin films.

Figure S2. Radial distribution functions (RDFs) of (a) 4CzIPN-mCBP pairs, (b) 4CzIPN-4CzIPN pairs, and (c) mCBP-mCBP pairs in binary 4CzIPN:mCBP and ternary TBRb:4CzIPN:mCBP films as a function of intermolecular center-of-mass distance (R).

Figure S3. Normalized distributions of singlet (S, dashed line) and triplet (T, solid line) excitedstate energies in mCBP, evaluated for molecules extracted from MD trajectories in the TBRb:4CzIPN:mCBP blend.

Figure S4. Normalized distributions of the energy differences ΔE_{S1T1} in TBRb (a) and 4CzIPN (b); the energy differences ΔE_{S1T2} in TBRb (c); and the SOC values between the S₁ and T₁ states in TBRb (d), evaluated for molecules extracted from MD trajectories in the TBRb:4CzIPN:mCBP blend.