Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

White-Light Defect Emission and Enhanced Photoluminescence Efficiency in 0D Indium-Based Metal Halide

Qidi Ran, Yan Zhang, Jun Yang, Rongxing He,* Lei Zhou,* and Shanshan Hu*

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China

Corresponding Authors

*herx@swu.edu.cn

*zhoulei25@swu.edu.cn

*hushan3@swu.edu.cn

Figure S1. Photographs of $(C_6H_8N)_6InBr_9$ crystals under nature light (a) and 365 nm UV light (b).

Figure S2. Detailed view of the structure of $(InBr_6)^{3-}$ octahedron that exhibits a Jahn-Teller-like distortion.

Figure S3. Distance between the adjacent In atom.

Figure S4. FTIR spectra of C_6H_9NBr and $(C_6H_8N)_6InBr_9$.

Figure S5. (a) Scanning electron microscope (SEM) image of $(C_6H_8N)_6InBr_9$ single crystals. (b) and (c) is the corresponding EDX mapping of In and Br element, respectively. (d) Representative EDX spectrum of $(C_6H_8N)_6InBr_9$ crystal. The Br:In ratio is 8.5:1, slightly lower than 9:1 which is the theoretical ratio for $(C_6H_8N)_6InBr_9$.

Figure S6. UV-vis absorption spectrum of (C₆H₈N)₆InBr₉.

Figure S7. PLE/PL peak intensities of $(C_6H_8N)_6InBr_9$ at different temperature.

Figure S9. PXRD patterns of Sb³⁺-doped (C₆H₈N)₆InBr₉ with Sb³⁺ amount from 3.52% to 100%. The right part displays the selected range, where the PXRD peaks have moved toward higher diffraction degrees.

Figure S10. UV-vis absorption spectra of $(C_6H_8N)_6InBr_9:x\%Sb$ (x = 0 ~ 2.08). The inset shows the selected range, where an additional absorption peak between 315 and 340 nm emerges and enhances with increasing Sb³⁺ amount, which can be attributed to the ${}^{1}S_0 \rightarrow {}^{3}P_1$ transition of Sb³⁺.

Figure S11. PL decay curve of $(C_6H_8N)_6InBr_9:0.58\%Sb$ measured at 645 nm.

Figure S12. PL spectrum of $(C_6H_8N)_6InBr_9:0.58\%Sb$ by exciting at 322 nm.

Figure S13. Emission-wavelength-dependent photoluminescence excitation (PLE) spectra (a) and Excitation-wavelength dependent PL spectra (b) of $(C_6H_8N)_6InBr_9:0.58\%Sb$.

Figure S14. (a) Temperature-dependent PL spectra of $(C_6H_8N)_6InBr_9:0.58\%Sb$. (b) PL peak intensities at different temperature.

Figure S15. PL decay curves of $(C_6H_8N)_6InBr_9:0.58\%$ Sb measured at RT (blue dots) and 80 K (yellow dots).

Figure S16. PL spectrum of $(C_6H_8N)_6InBr_9:0.58\%Sb$ in the range from 400 to 450 nm, in which almost no defect-related emission can be detected.

Figure S17. (a) PXRD patterns of $(C_6H_8N)_6InBr_9$ and $(C_6H_8N)_6InBr_9:0.58\%Sb$ stored in different periods. (b) Thermogravimetric analysis (TGA) thermogram of $(C_6H_8N)_6InBr_9$ and $(C_6H_8N)_6InBr_9:0.58\%Sb$.

Table S1. Single crystal X-ray diffraction data of $(C_6H_8N)_6InBr_9$ single crystal.

Compound	$(C_6H_8N)_6InBr_9$	
Formula weight (g/mol)	1397.82	
Temperature (K)	296	
Crystal system	monoclinic	
Space group	I2/a	
a (Å)	9.9742(2)	
b (Å)	21.4709(4)	
c (Å)	23.0872(4)	
α (°)	90	
β (°)	92.957(2)	
γ (°)	90	
Volume(Å ³)	4937.66(16)	
Z	4	
Radiation	Cu Kα (λ = 1.54184)	
pcalc. (g/cm³)	1.880	
μ (mm ⁻¹)	12.597	
F(000)	2676.0	
Crystal size/mm3	0.2 × 0.02 × 0.02	
Index ranges	-6 ≤ h ≤ 12, -25 ≤ k ≤ 24, -28 ≤ l ≤ 28	
Data collection range	5.627° < θ < 71.544°	
Data completeness	0.9962	
R indexes [I>=2σ (I)]	R ₁ = 0.0415, wR ₂ = 0.1119	
Independent reflections	4715[R _{int} = 0.0178, R _{sigma} = 0.0255]	
Data/Parameters	4715/390/340	
Goodness-of-fit on F ²	1.036	
Largest diff. peak and hole (eų)	1.95 and -0.66	

Emission wavelength (nm)	Lifetime (ns)	$ au_1$ (ns)	$ au_2$ (ns)	$ au_3$ (ns)
423	1.07	1.22(41%)	0.28(47%)	3.72(12%)
450	1.21	1.52(41%)	0.32(49%)	4.41(10%)
500	1.78	2.36(42%)	0.53(52%)	8.92(6%)
545	2.02	2.35(44%)	8.65(9%)	0.53(47%)
575	1.96	2.25(45%)	8.03(9%)	0.48(46%)

Table S2. Fitting parameters for the PL decay curves of $(C_6H_8N)_6InBr_9$ using a three-exponential decay model.

 $\textbf{Table S3.} A \text{ comparison of the PL properties between Sb^{3+}-doped (C_6H_8N)_6InBr_9 and other lead-containing compounds.}$

0d	PL	fwhm		PLQY	Deferment	
Compound	(nm)	(nm)	CIE	(%)	Kelerence	
(EDBE)[PbBr ₄]	573	215	(0.39, 0.42)	9	J. Am. Chem. Soc. 2014,	
					136,13154-13157	
(N-MEDA)[PbBr ₄]	558	165	(0.36,0.41)	~0.5	J. Am. Chem. Soc. 2014, 136,	
					1718-1721	
(2montH)DhPr	417		(0.24, 0.22)	2 27	Chem. Commun., 2018, 54,	
(211eptn ₂)rbb1 ₄	417	-	(0.24, 0.23)	5.57	40534056	
$(C_{13}H_{19}N_4)_2PbBr_4$	460	66	(0.14, 0.09)	~40	ACS Materials Lett. 2019, 1,	
					594-598	
$(C_5H_{14}N_2)_2Pb_4MnCI_{14}$	678	-	(0.68, 0.31)	32	J. Am. Chem. Soc. 2019, 141,	
					12197-12201	
(benzyl) ₆ [Pb ₃ Br ₁₂]	571	146	(0.43, 0.50)	10	Chem. Mater. 2020, 32,	
					4431-4441	
	620	100	(0.56, 0.37)	4.7	J. Phys. Chem. Lett. 2020, 11,	
(C ₉ H ₂₂ N ₂)PDBr ₄					2934-2940	
(TDMP)PbBr ₄ :	510/		(0.00, 0.07)	<u> </u>	Angew. Chem. 2020, 132, 2824	
0.027%Mn	640	-	(0.33, 0.37)	60	- 2829	
	396/		(0.04.0.00)		J. Mater. Chem. C, 2020, 8,	
(N-AEP) ₂ PD ₂ CI ₁₀ ·H ₂ O	493	-	(0.31, 0.33)	1	6710—6714	
		70	(010,011)	04.0	J. Mater. Chem. C, 2020, 8,	
	392	73	(013, 0.11)	21.3	1189011895	
[TMPDA] ₂ Pb ₃ Br ₁₀ 526 25 (500	05	(0.40.077)	74.05	J. Mater. Chem. C,2021, 9,	
	(0.16, 077)	71.95	15047-15055			
	E] ₂ Pb ₃ Cl ₁₀ 445 174 (0.25, 0.29) 19.4	174		40.45	Chem. Commun., 2021, 57,	
[DTHPE]2PD3CI10		19.45	12181221			
(C ₆ H ₈ N) ₆ InBr ₉ :	C 4 E	165	(0.57, 0.42)	74.04	This work	
0.58%Sb	040	COL	(0.37, 0.42)	/ 1.04	THIS WORK	

Molar ratio	PLQY (%)
< 0.42	29.84
0.42%	37.60
0.58%	71.84
1.10%	57.73
2.08%	42.38
3.52%	41.31

Table S4. PLQYs of Sb³⁺-doped ($C_6H_8N_6InBr_9$ with different Sb³⁺ amount.

Table S5. Elemental analysis (by ICP-OES) of Sb³⁺-doped ($C_6H_8N_6InBr_9$ with different Sb³⁺ amount.

Molar ratio	Sb (μg/mL)	ln (μg/mL)
0.42%	0.046	10.35
0.58%	0.064	10.44
1.10%	0.124	10.58
2.08%	0.226	10.24
3.52%	0.398	10.65

Table S6. Summary of Huang-Rhys factor (S)

Compounds	Huang-Rhys factor (S)	Reference
Rb ₇ Sb ₃ Cl ₁₆	9.6	Sci. Bull. 2019, 64, 904
(MA)4Cu2Br6	10.7	J. Phys. Chem. Lett. 2020, 11, 4703
(BzTEA) ₂ TeCl ₆	12.45	J. Mater. Chem. C, 2021, 9, 4351-4358
13%Mn:CsCdBr ₃	11	J. Phys. Chem. C 2021, 125, 32, 18031
(TBA)CuCl ₂	8.46	
(TBA)CuBr ₂	14.38	J. Phys. Chem. Lett. 2021, 12, 6919
ODASnBr ₄ [16%-DCM]	27.5	
ODASnBr ₄ [70%-CFM]	26.0	Adv. Funct. Mater. 2021, 2102182
Cs ₂ ZrCl ₆ :Te	26.93	J. Energy Chem. 2022, 65, 600

Cs ₂ NaYCl ₆	7.0	Phys. Rev. B 1986, 34, 2735
Cs ₂ AgInCl ₆	37	Nature 2018, 563, 541-545
Cs_2InCl_5 ·H2O:Sb ³⁺	32.28	Chem. Mater. 2020, 32, 12, 5327-5334
$(C_6H_8N)_6InBr_9{:}0.58\%Sb$	31.16	This work