Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Versatile methods for improving the mechanical properties of bulk heterojunction layers to enable stretchable organic solar cells

Emilie Dauzon, Xavier Sallenave, Cedric Plesse, Fabrice Goubard*, Aram Amassian*, and Thomas D. Anthopoulos**

1,12-diazidododecane ($C_{12}N_3$) was obtained by a reaction of 1,12-dibromododecane (DBDD) with sodium azide NaN₃. This synthesis (Figure 3-2) was realized by the method described by Thomas.^[1]

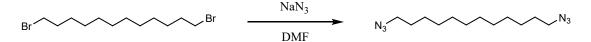


Figure S 1: Synthesis of 1,12-diazidododecane from 1,12-dibromododecane.

In a solution of 1,12-dibromododecane (2 g, 9 mmol) in DMF (15.0 mL) was added NaN₃ (1.18 g, 27.3 mmol). The mixture was stirred for 16 h at 60°C. Then, 100 mL of water and 25 mL of diethyl ether (Et_2O) were added. After phase separation, the aqueous solution was extracted with Et_2O (2x25 mL). The organic phase was washed with water (3x10 mL) and dried with magnesium sulfate. The solvent was evaporated, and the product was purified by column chromatography on silica (petroleum ether as eluent). ¹H NMR (250 MHz, CDCl₃) δ ppm: 3.26 (t, 4H), 1.60 (m, 4H), 1.32 (m, 16H).

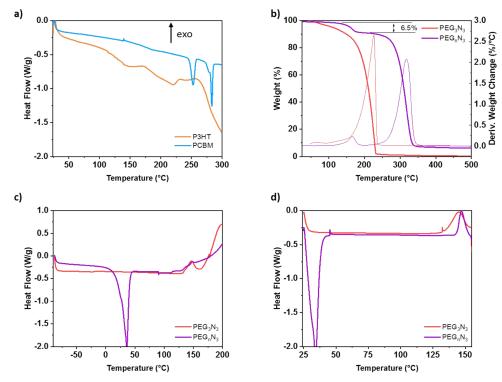


Figure S 2: Thermal gravimetric analysis and DSC plots of a) P3HT and PC₆₁BM, and b-d) cross-linkers PEG₃N₃ and PEG_nN₃ at different temperatures.

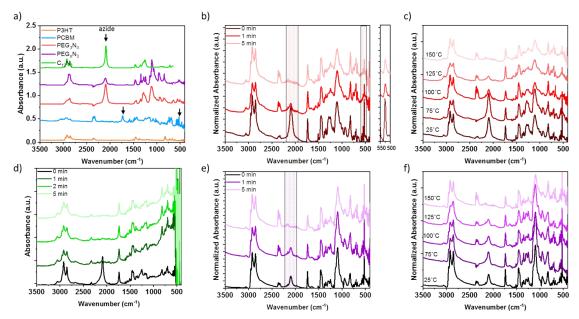


Figure S 3: FTIR spectra of a) the precursors before cross-linking. b) Kinetic of cross-linking via monitoring P3HT:PC₆₁BM:PEG₃N₃ after thermal annealing at 150°C. c) Temperature effect on P3HT:PC₆₁BM:PEG₃N₃, for 5min. d) Kinetic of P3HT:PC₆₁BM:C₁₂N₃ and e)P3HT:PC₆₁BM:PEG_nN₃ after thermal annealing at 150°C.
f) Dependence of the temperature on the cross-linking of P3HT:PC₆₁BM:PEG_nN₃ during 5 min of curing.

РЗНТ:РСВМ	10 wt% C ₁₂ N ₃	10 wt% PEG ₃ N ₃	10 wt% PEG _n N ₃	10 wt% SEBS	10 wt% PDMS
50 μm	50 μm	50 μm	50 µm	50 μm	50 μm
РЗНТ	25 wt% C ₁₂ N ₃	25 wt% PEG ₃ N ₃	25 wt% PEG _n N ₃	25 wt% SEBS	25 wt% PDMS
			•		8, 0
50 μm PCBM	50 μm 50 wt% C ₁₂ N ₃	50 wt% PEG ₃ N ₃	50 µm 50%wt PEG _n N ₃	50 µm	50 μm 50 wt% PDMS
r com	50 W170 C12/03	30 W10 FL03N3	Source Co _n n ₃		
50 μm	50 μm	50 μm	50 µm	50 µm	50 µm

Figure S 4: Optical micrographs of P3HT, PC₆₁BM, and P3HT:PC₆₁BM in the presence of additives as indicated in the picture after annealing.

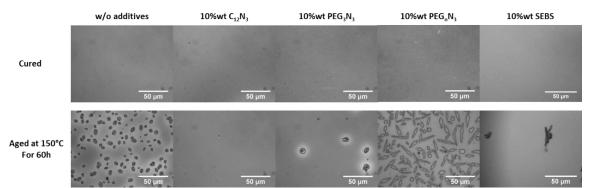


Figure S 5: Microscopic images of $PC_{61}BM$ aggregation in P3HT:PC₆₁BM layer in the presence of additives at 10 wt% before and after aging for 60 h at 150°C.

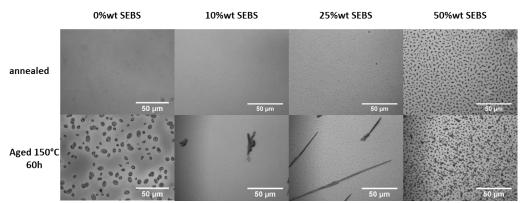


Figure S 6: Effect of the thermal aging on P3HT:PC₆₁BM morphology taken by microscope regarding the SEBS content. The microscopic images show before and after aging of 60 h at 150°C.

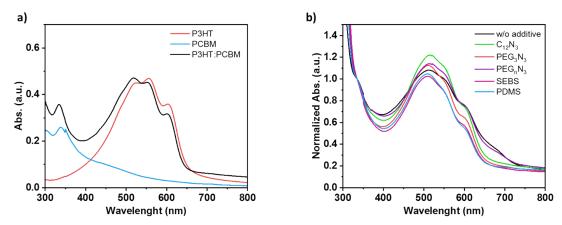


Figure S 7: UV-vis absorbance spectra obtained of a) casted PC₆₁BM, P3HT, and P3HT:PC₆₁BM (1:0.8) blend and b) annealed P3HT:PC₆₁BM film in the presence of additives at 50 wt%.

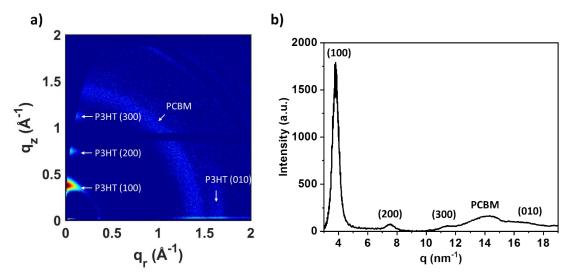


Figure S 8: a) Two-dimensional GIWAXS image of P3HT:PC₆₁BM thin film and b) the resulting integration.

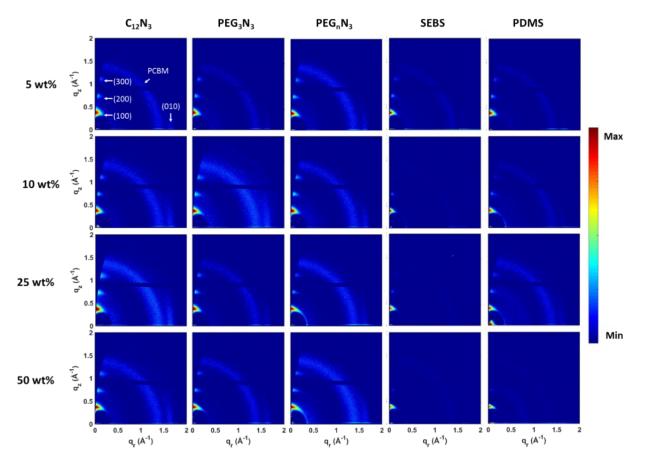


Figure S 9: 2D grazing incidence X-ray diffraction patterns of annealed P3HT:PC₆₁BM blend with additives

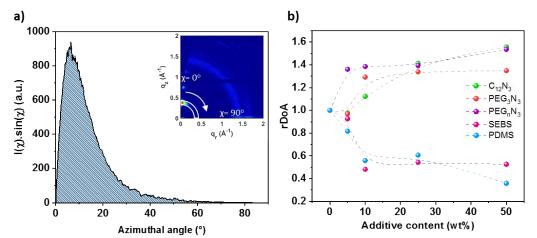


Figure S 10: a) Example of azimuthal integration of (100) P3HT lamella peak. b) The relative degree of aggregation to neat P3HT:PC₆₁BM of (100) peak

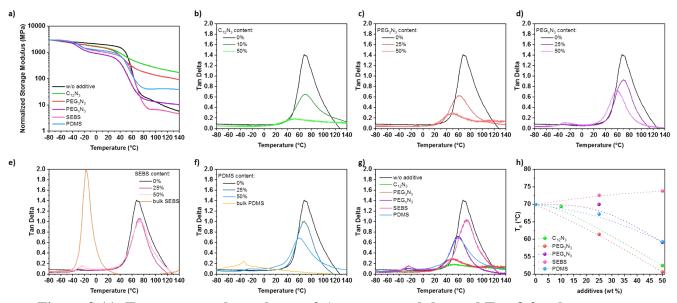


Figure S 11: Temperature dependence of a) storage modulus and Tan δ for the P3HT:PC₆₁BM:additive in presence of b) C₁₂N₃, c) PEG₃N₃, d) PEG_nN_n, e) SEBS, and f) PDMS. g) Comparison of Tan δ for P3HT:PC₆₁BM:additive composites (1:0.8:0.4), i.e., in the presence of 50 wt% additive and h) Summary of the glass temperature.

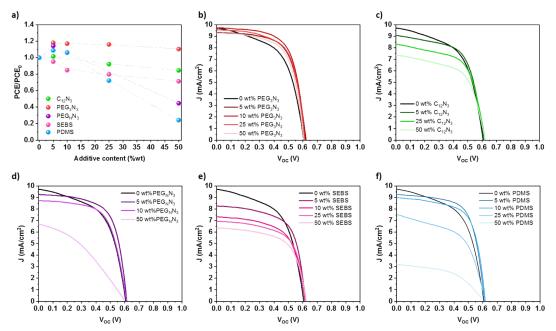


Figure S 12: Photovoltaic curves associated with P3HT:PC₆₁BM solar cells in the presence of additives.

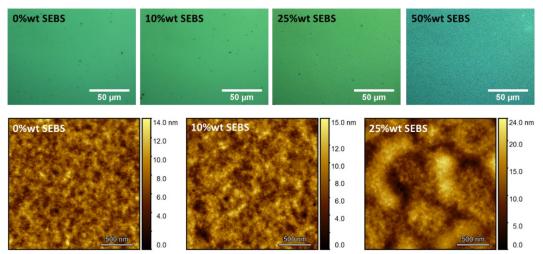


Figure S 13: PCE10:PC₇₁BM:SEBS morphology characterized by optical microscopy (top row) and atomic force microscopy (bottom row).

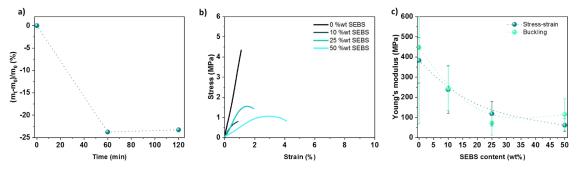


Figure S 14: a) Mass loss of PCE10:PC₇₁BM under vacuum at 50°C after MeOH treatment. b) Characterization stress-strain after vacuum drying at 50°C for 90 min. c) Young's moduli by stress-strain or buckling methods with different amount of SEBS (wt%/wt PC₇₁BM).

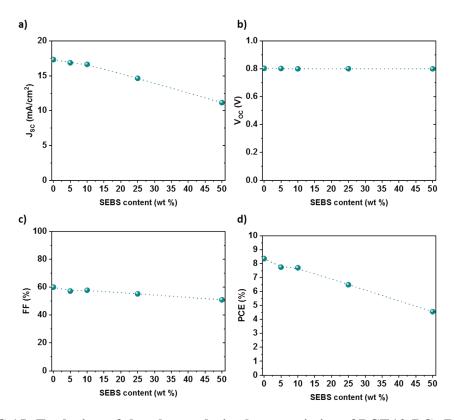


Figure S 15: Evolution of the photovoltaic characteristics of PCE10:PC₇₁BM blend in the function of SEBS additive content.

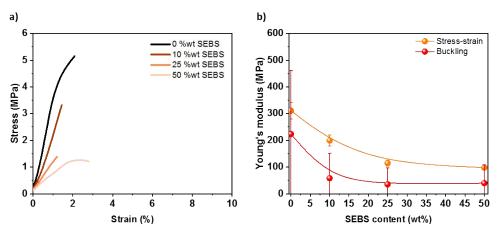


Figure S 16: Determination of Young's moduli: a) stress-strain curves of PCE13:IT-4F with 0, 10, 25, and 50 wt% SEBS and b) comparison of Young's moduli by buckling method or direct measurements by stress-strain.

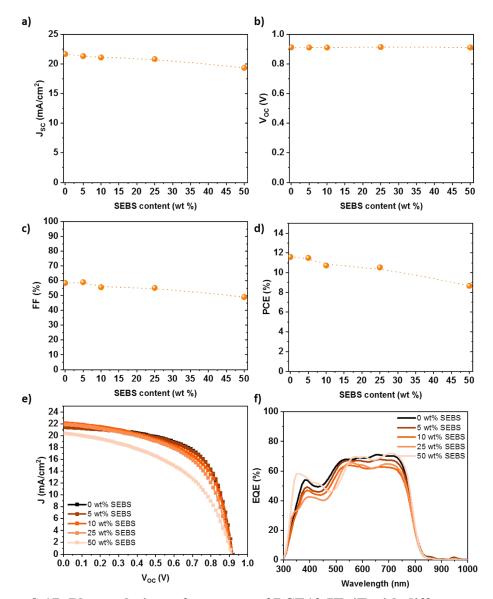


Figure S 17: Photovoltaic performances of PCE13:IT-4F with different amounts of SEBS elastomer.

References

[1] J. R. Thomas, X. Liu, P. J. Hergenrother, J. Am. Chem. Soc. 2005, 127, 12434.