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1 Estimating spin-orbit coupling matrix elements

Symbols in Fig. S1 show squared modulus of the S1-T1 coupling as a function
of the conformational coordinate (see ref. 35 for details). To simulate this quan-
tity we diagonalized the molecular Hamiltonian (Eq. 2 main text) neglecting
the spin-orbit coupling (SOC). We also disregard the coupling to molecular vi-
brations (TD-DFT calculations are done at fixed geometry) and diagonalize the
electronic Hamiltonian for fixed δ. In the singlet subspace we obtain S0 and S1
as follows:

|S0⟩ =
√
1− ρ |N⟩+√

ρ |Z⟩ (1)

|S1⟩ =
√
ρ |N⟩

√
1− ρ |Z⟩

where:

ρ =
1

2

[
1− z√

z2 + τ2

]
(2)

where τ = τ0| sin δ|
In the triplet subspace we obtain T1 and T2 as:

|T1⟩ =
√
1− σ |T ⟩+

√
σ |L⟩ (3)

|T2⟩ =
√
σ |T ⟩

√
1− σ |L⟩

where

σ =
1

2

[
1− k − z√

(k − z)2 + β2

]
(4)

where β = β0| sin δ|.
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Figure S1: The square modulus of the S1-T1 SOC matrix element vs the con-
formational coordinate. Black circles show TD-DFT results, from ref. 35. The
black line show the best fit obtained in ref. 35 setting VSOC = 3.84 × 10−4 eV
and WSOC = 1.74× 10−4 eV. Red lines show results for the same VSOC value,
but for negative WSOC . Specifically: WSOC = −1.5×10−4 eV (continuous line),
WSOC = −1.0× 10−4 eV (dotted line), WSOC = −0.5× 10−4 eV (dashed line),
WSOC = −0.1× 10−4 eV (dot-dashed line).

We are now in the position to calculate the SOC matrix elements

⟨S0| ĤSOC |T1⟩ =
√

1− ρ
√
1− σVSOC +

√
ρ
√
σWSOC (5)

⟨S1| ĤSOC |T1⟩ =
√
ρ
√
1− σVSOC −

√
1− ρ

√
σWSOC

At δ = 0, β = τ = 0 and ρ = σ = 0 so that the value of ⟨S0|ĤSOC |T1⟩
at δ = 0 fixes the (absolute value of) Vsoc = 3.84 × 10−4 eV. In ref. 35 we
estimated WSOC = 1.74 × 10−4 eV as to best reproduce the δ-dependence of
| ⟨S1| ĤSOC |T1⟩ |2 (see the black line in Fig. S1. However in that work we
implicitly imposed that the VSOC and WSOC had the same sign (their absolute
sign is irrelevant, but having the two with the same or opposite sign leads to
different results. The red curves in Fig. S1 are obtained imposing opposite sign
for the two SOC matrix elements: it is clear that results are untenable leading
to a monotonous increase of | ⟨S1| ĤSOC |T1⟩ |2 with |δ|.

2 Non-adiabatic approach to conformational de-
grees of freedom

The dimensionless conformational coordinate δ̂ can be expressed in second quan-
tization as

δ̂ = (â† + â) (6)

where â† (â) is the creation (annihilation) operator of a vibrational quantum.
In the implementation of the calculation, in order to write the Hamiltonian in
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terms of the creation and annihilation operators, we expand | sin(δ)| up to the
third order, as to be consistent with the quartic expansion of the potential.
Specifically:

sin δ ∼ δ +
1

6
δ3 (7)

We observe that the sign of the mixing matrix elements, τ and β is irrelevant,
so we can neglect the absolute value in Eq. 1 (main text).

3 Contributions to the RISC and ISC rates
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Figure S2: The dependence of the RISC and ISC rates calculated for the stan-
dard model (black symbols) and setting either VSOC or WSOC to zero (blue and
red symbols, respectively).
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4 RISC rates: the Marcus model

The Marcus approach, as applied to RISC rates, relies on the adiabatic solution
of the molecular Hamiltonian in Eq. 2. Neglecting the kinetic energy associated
to the conformational and vibrational coordinate, the diagonalization of the adi-
abatic Hamiltonian leads to δ and Q-dependent energies for the four electronic
states. Fig S3 shows the resulting potential energy surfaces for the S1 and T1

states. The two surfaces are degenerate at δ = 0° where the SOC vanishes,
| ⟨S1|HSOC |T1⟩ | = 0. The equilibrium position for the triplet state is found
at δ = 22° and Q = 1.68 with energy ET = 3.2217 eV. The singlet minimum
is found at δ = 0° and Q = 1.92 with energy ES = 3.2700 eV. The singlet-
triplet minimum ∆EST = 0.0485 eV coincides with the relaxation energy and
the activation energy, so that

kRISC =
2π

ℏ
| ⟨S1|HSOC |T1⟩ |2√

4π∆ST kBT
exp

{
−∆EST

kBT

}
(8)

where kB is the Boltzmann constant. The delicate point is the SOC matrix
elements. Indeed the Marcus model is defined on diabatic states, with constant
interaction. Here instead we are trying to apply the model to the adiabatic
states and | ⟨S1|HSOC |T1⟩ | varies with the molecular geometry. Specifically, at
the crossing point | ⟨S1|HSOC |T1⟩ | = 0, while at the equilibrium geometry for
the triplet state | ⟨S1|HSOC |T1⟩ | = 2.66 × 10−5 eV. Of course the RISC rate
vanishes exactly if the SOC is fixed at the value relevant to the crossing point.
Fig. S4 shows RISC rates calculated with the above equation setting the SOC
matrix element to the value calculated at the triplet geometry. Corresponding
ISC rates are then estimated imposing the detailed balance.
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Figure S3: Contour plots of the adiabatic potential energy surfaces (eV) relevant
to T1 (red) and S1 (black) states.
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Figure S4: The temperature dependence of the RISC and ISC rates calculated
for the standard model (black symbols) and in the Marcus model fixing the SOC
matrix elements to the value relevant to the equilibrium geometry for the triplet
state (red symbols). Setting the SOC matrix element to the value relevant to
the singlet-triplet crossing point both RISC and ISC rate would vanish.
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5 Comparison with PCM non-equilibrium for-
malisms

Table S1: Excitation energy for S1 and T1 computed in the effective model
(EM) and at the TDA-M06-2X/6-31G(d) level. All results refer to vertical
transition energies at the ground state equilibrium geometry. Two dielectric
media are considered with ϵopt = ϵst=2.6 and 3, as specified in parentheses.
In EM environmental effects are accounted for via an antiadiabatic solvation
model (refs. 32, 34). TD-DFT results are obtained in the non-equilibrium
PCM solvation formalisms, in the three flavors available in Gaussian16 [ref. 47]:
linear response (LR), corrected linear response (cLR) and external iteration
(EI). All values are in electronvolts.

S1 T1

gas phase EM 3.44 3.44
gas phase TDA-DFT 3.4523 3.4461

EM (2.6) 3.14 3.14
PCM-LR (2.6) 3.5038 3.4973
PCM-cLR (2.6) 3.1262 3.1231
PCM-EI (2.6) 2.4196 2.4180

EM (3.0) 3.10 3.10
PCM-LR (3.0) 3.5087 3.5021
PCM-cLR (3.0) 3.0884 3.0857
PCM-EI (3.0) 2.3020 2.3007
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