Molecular Design to Enhance Binaphthyl-Based Chiroptics

Using Organoboron Chemistry in Isomeric Chiral Scaffolds

Kai Zhang,^a Jingyi Zhao,^a Niu Zhang,^b Jin-Fa Chen,^a Nan Wang,^a Xiaodong Yin,^a Xiaoyan Zheng^{*a} and Pangkuan Chen^{*a}

^aBeijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China

^bAnalysis & Testing Centre, Beijing Institute of Technology of China, Beijing, 102488, China

* xiaoyanzheng@bit.edu.cn; pangkuan@bit.edu.cn

Table of Contents

1. Experimental Section	1
2. Synthetic Procedures	2
3. Characterization by NMR Spectroscopy	7
4. PL Spectra and Transient PL Decay Curves	19
5. Chiral HPLC Trace Analysis	24
6. CPL Spectra in Different Solutions	27
7. Thermochromic Emissions and Aggregation-induced Emission Properties	28
8. DFT and TD-DFT Computations and Electrochemical Measurements	31

1. Experimental Section

Materials and General Methods: 2-Naphthol, 7-bromo-2-naphthol, 4-(diphenylamino)-phenylboronic acid, K₂CO₃, Pd(PPh₃)₄, FeCl₃·6H₂O, CH₂BrCl, and CH₃I were purchased from Energy Chemical. Tetrahydrofuran (THF), dichloromethane, petroleum ether, methanol, and ethyl acetate were purchased from Sinopharm Chemical Reagent Co., Ltd. The chemicals were used without further purification unless otherwise noted. Anhydrous solvents were distilled from commercial materials with sodium/benzopheneone.

All commercial chemicals were used without further purification. 2,2'-Dihydroxy-1,1'-binaphthyl (1), 6,6'-dibromo-2,2'-dihydroxy-1,1'-binaphthyl (2), 6,6'-dibromo-1,1'-binaphthyl-2,2'-diyloxymethane (3), 6,6'-dibromo-2,2'-dimethoxy-1,1'-binaphthalene (5) and 7,7'-dibromo-2,2'-dihydroxy-1,1'-binaphthyl (7) were prepared using the similar procedures previously described. ^[1, 2, 3, 4]

400 MHz ¹H, 101 MHz ¹³C, and 225 MHz ¹¹B NMR spectra were recorded on a Bruker spectrometer. ¹¹B NMR spectra were acquired with boron-free quartz NMR tubes and the spectra were referenced externally to BF₃·Et₂O ($\delta = 0$). High resolution mass spectral data were obtained via ESI on an Agilent (Q-TOF 6520) analyzer.

UV-visible absorption spectra were recorded on a Cary 300 UV-Vis spectrophotometer. Luminescent spectra were recorded on an Edinburgh Instruments FLS980. Fluorescent quantum efficiencies were determined using a Hamamatsu C11347-11 Quantaurus-QY spectrometer.

Analytical HPLC was performed on an Agilent 1260 Infinity II instrument equipped with a diode array detector and CHIRALPAK columns (4.6 mm × 250 mm, 3 μ m) from Daicel Chiral Technologies. Column temperature was maintained at 30 °C. The CD spectra were measured using a Circular Dichroism spectrometer (J-1500, Jasco). CPL measurements of solutions ($c = 1.0 \times 10^{-5}$ M) and neat films were performed with circularly polarized luminescence spectrometer (CPL-300, Jasco). Samples were excited with a Xenon ozone-free lamp 150 W LS. The following parameters were used: emission slit width = 3 mm, integration time = 2 second, scan speed = 200 nm/min, accumulations = 2.

The neat films used in this study have been prepared on quartz flakes by spin coating solutions of enantiopure compounds with a concentration of $\sim 10 \text{ mg/mL}$. 0.1 mL of the solution was deposited on the quartz flakes fixed within the spin-coater holder, and the film was obtained using a sequence including 60 seconds of rotation, with an acceleration of 1000 rpm/s and a maximum speed of 3000 rpm.

DFT calculations were performed with the Gaussian 09 program. Geometry optimizations and vertical excitations were calculated by means of hybrid density functional CAM-B3LYP with the basis set of 6-31G(d). The input files and orbital representations were generated with Gaussview 5.0 (scaling radii of 75%, isovalue = 0.02). Excitation data were calculated using TD-DFT (CAM-B3LYP functional and 6-31G* basis). The resulting structures were confirmed to be stationary points through vibrational frequency analysis.

The electronic circular dichroism (ECD) spectra were simulated via TD-DFT calculations of the lowest 30 vertical singlet electronic excitations (CAM-B3LYP functional and 6-31G* basis). Gaussian broadening of the intensities with a parameter $\sigma = 0.20$ eV was performed for all ECD spectra. Solvent effects on the spectra were considered by means of the polarizable continuum model^[5] (PCM) for dichloromethane (DCM).

2. Synthetic Procedures

Scheme S1. Molecular structures and synthetic route of racemic MeBTT, MeBTB, *p*-BTT, *p*-BTB, *m*-BTT and *m*-BTB.

2.1 Synthesis of 4 and *p*-BTT

A mixture of **3** (100 mg, 0.22 mmol), (4-(diphenylamino)phenyl)boronic acid (57 mg, 0.22 mmol), K₂CO₃ (92 mg, 0.66 mmol) and Pd(PPh₃)₄ (10 mg, 8.8 µmol) in THF (10 mL) and deionized water (2 mL) was refluxed at 70 °C for 24 h under N₂. After the mixture was cooled down, 10 mL of deionized water was added to the resulting solution and the mixture was extracted with CH₂Cl₂ several times. The organic phase was dried over Na₂SO₄ and was further purified by column chromatography on silica gel using CH₂Cl₂/petroleum ether (1/5, v/v) as eluent to give the product **4** (40 mg, yield: 29%) and *p*-BTT (30 mg, yield: 22%) as white solid. Melting point (Mp: >250°C for *p*-BTT).

¹H NMR (400 MHz, CDCl₃) of **4**: δ 8.11 (s, 1H), 8.10 (s, 1H), 8.02 (d, *J* = 9.0 Hz, 1H), 7.89 (d, *J* = 9.0 Hz, 1H), 7.64–7.54 (m, 3H), 7.49 (m, 3H), 7.44 (d, *J* = 9.0 Hz, 1H), 7.40–7.35 (m, 1H), 7.33–7.27 (m, 4H), 7.21–7.10 (m, 6H), 7.07–7.01 (m, 2H), 5.70 (s, 2H); *p*-BTT: δ 7.97 (d, *J* = 9.0 Hz, 4H), 7.80 (s, 2H), 7.72–7.64 (m, 2H), 7.45 (d, *J* = 9.0 Hz, 2H), 7.23–7.15 (m, 12H), 7.09–6.95 (m, 12H), 6.92 (d, *J* = 8.4 Hz, 4H), 5.72 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) of **4**: δ 151.5, 151.2, 147.6, 147.4, 137.2, 134.3, 132.9, 132.2, 130.9, 130.7, 130.7, 130.3, 129.4, 129.3, 128.7, 127.9, 127.0, 126.4, 125.7, 125.4, 124.5, 123.9, 123.0, 122.2, 121.3, 119.1, 103.2; *p*-BTT: δ 151.7, 147.5, 147.1, 138.3, 134.8, 132.4, 130.8, 130.0, 129.2, 129.0, 127.9, 126.2, 124.6, 124.4, 124.3, 123.7, 122.9, 120.7, 103.2. ESI-HRMS (m/z): calcd. for **4**: C₃₉H₂₆BrNO₂ [M+H]⁺ 620.1225, found 620.1213, calcd. for *p*-BTT: C₅₇H₄₀N₂O₂ [M+H]⁺ 785.3168, found 785.3127.

2.2 Synthesis of *p*-BTB

The mixture of **4** (100 mg, 0.16 mmol), 2-(4-(dimesitylboryl)phenyl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (110 mg, 0.24 mmol), Pd(PPh₃)₄ (10 mg, 9 µmol), toluene (6 mL), ethanol (2 mL) and 1 M K₂CO₃ aqueous solution (1 mL) in a roundbottom flask was stirred at 80 °C under N₂ atmosphere for 8 h. The mixture was then cooled to r.t. and poured into water (100 mL). After extraction with CH₂Cl₂, the organic phase was dried over Na₂SO₄. Purification by column chromatography on silica using CH₂Cl₂/petroleum ether (1:6, v/v) as eluent yielded a white solid of *p*-**BTB** (56 mg, yield: 40%). Melting point (Mp: 195°C). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.11 (s, 1H), 8.08–7.98 (m, 2H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.68–7.55 (m, 8H), 7.54–7.46 (m, 2H), 7.36–7.25 (m, 4H), 7.20–7.10 (m, 6H), 7.08–7.00 (m, 2H), 6.84 (s, 4H), 5.72 (s, 2H), 2.32 (s, 6H), 2.05 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 151.2, 147.7, 147.4, 143.8, 140.8, 138.6, 137.2, 137.1, 134.5, 132.2, 132.1, 131.6, 131.1, 130.7, 130.5, 129.3, 128.2, 127.9, 127.6, 127.4, 126.7, 126.5, 126.1, 125.9, 125.6, 125.5, 125.4, 124.5, 124.0, 123.0, 121.5, 121.3, 103.2, 23.50, 21.2. ¹¹B NMR (225 MHz, CDCl₃) δ 74 ppm. ESI-HRMS (m/z): calcd. for C₆₃H₅₂BNO₂ [M+H]⁺ 866.4169, found 866.4134.

2.3 Synthesis of 6 and MeBTT

A mixture of 5 (170 mg, 0.36 mmol), (4-(diphenylamino)phenyl)boronic acid (103 mg, 0.36 mmol), K₂CO₃ (148 mg, 1.08 mmol) and Pd(PPh₃)₄ (21 mg, 14.4 µmol) in THF (10 mL) and deionized water (2 mL) was refluxed at 70 °C under N₂ for 24 h. After the mixture was cooled down, 10 mL of deionized water was added to the resulting solution and the mixture was extracted with CH₂Cl₂ several times. The organic phase was dried over Na₂SO₄ and was further purified by column chromatography on silica gel using CH₂Cl₂/petroleum ether (1/5, v/v) as eluent to give the product 6 (60 mg, yield: 26%) and MeBTT (65 mg, yield: 29%) as white solid. Melting point (Mp: 164°C). ¹H NMR (400 MHz, CDCl₃) of **7**: δ 8.10–7.96 (m, 3H), 7.89 (d, J = 9.0 Hz, 1H), 7.54 (d, J = 9.0 Hz, 2H), 7.51–7.41 (m, 3H), 7.31–7.22 (m, 6H), 7.19–7.07 (m, 6H), 7.06–6.98 (m, 3H), 3.78 (d, J = 2.0 Hz, 6H); MeBTT: δ 8.14–7.94 (m, 4H), 7.62– 7.52 (m, 4H), 7.52–7.41 (m, 4H), 7.31–7.22 (m, 8H), 7.19 (d, J = 9.0 Hz, 2H), 7.17– 7.10 (m, 12H), 7.06–6.98 (m, 4H), 3.79 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) of **7**: δ 155.2, 154.9, 147.7, 147.0, 135.8, 135.0, 132.8, 132.5, 130.2, 129.8, 129.8, 129.6, 129.5, 129.3, 128.5, 127.8, 127.2, 125.9, 125.5, 125.2, 124.4, 124.0, 122.9, 119.8, 118.7, 117.3, 115.1, 114.4, 56.8; **MeBTT**: δ 155.0, 147.7, 146.9, 135.7, 135.2, 133.0, 129.6, 129.5, 129.4, 127.8, 125.8, 125.8, 125.1, 124.4, 124.0, 122.8, 119.5, 114.6, 57.0 ppm. ESI-HRMS (m/z): calcd. for 7: C₃₉H₂₆BrNO₂ [M+H]⁺ 636.1538, found 636.1552, calcd. for **MeBTT**: C₅₈H₄₄N₂O₂ [M+H]⁺ 801.3481, found 801.3497.

2.4 Synthesis of MeBTB

The mixture of **6** (100 mg, 0.16 mmol), 2-(4-(dimesitylboryl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.11 g, 0.24 mmol), Pd(PPh₃)₄ (15 mg, 9 μ mol), toluene (6 mL), ethanol (2 mL) and 1 M K₂CO₃ aqueous solution (1 mL) in a round-

bottom flask was stirred at 80 °C under N₂ atmosphere for 8 h. The mixture was then cooled to r.t. and poured into water (100 mL). After extraction with CH₂Cl₂, the organic phase was dried over Na₂SO₄. Purification by column chromatography on silica using CH₂Cl₂/petroleum ether (1:6, v/v) as eluent yielded a white solid of **MeBTB** (60 mg, yield: 43%). Melting point (Mp: 182°C). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 2.0 Hz, 1H), 8.09–7.96 (m, 3H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.57–7.52 (m, 3H), 7.50–7.41 (m, 3H), 7.30–7.22 (m, 5H), 7.20 (d, *J* = 9.0 Hz, 1H), 7.18–7.09 (m, 6H), 7.06–6.98 (m, 2H), 6.83 (s, 4H), 3.79 (d, *J* = 6.0 Hz, 6H), 2.31 (s, 6H), 2.04 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 155.0, 147.7, 146.9, 144.4, 141.8, 140.8, 140.1, 138.5, 137.1, 135.7, 135.6, 135.1, 133.5, 133.0, 129.9, 129.7, 129.5, 129.4, 129.3, 128.1, 127.8, 126.5, 126.2, 125.9, 125.9, 125.7, 125.2, 124.4, 124.0, 122.9, 119.4, 119.3, 114.6, 56.9, 23.5, 21.2. ¹¹B NMR (225 MHz, CDCl₃) δ 74 ppm. ESI-HRMS (m/z): calcd. for C₆₃H₅₂BNO₂ [M+H]⁺ 882.4482, found 882.4505.

2.5 Synthesis of 8

A mixture of **7** (100 mg, 0.23 mmol), CH₂BrCl (0.44 mL, 6.90 mmol), and K₂CO₃ (311 mg, 2.25 mmol) in dry DMF (3 mL) was stirred at 50 °C for 15 h under N₂ atmosphere. The reaction mixture was poured into water and EtOAc. The aqueous layer was extracted with EtOAc. The organic layers were combined and washed with water three times. After dried over Na₂SO₄, the solvent was evaporated under vacuo to give a residue. The residue was purified by column chromatography to afford **8** (82 mg, yield: 80%) as a white solid powder. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 9.0 Hz, 2H), 7.81 (d, *J* = 9.0 Hz, 2H), 7.64 (d, *J* = 2.0 Hz, 2H), 7.55 (dd, *J* = 9.0, 2.0 Hz, 2H), 7.48 (d, *J* = 9.0 Hz, 2H), 5.68 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 133.0, 130.6, 130.3, 130.1, 128.7, 128.5, 124.8, 121.4, 121.1. GC-MS (m/z): calcd. for C₂₁H₁₂Br₂O₂ [M⁺] 455.9, found 456.0.

2.6 Synthesis of 9 and *m*-BTT

A mixture of **8** (100 mg, 0.22 mmol), (4-(diphenylamino)phenyl)boronic acid (64 mg, 0.33 mmol), K_2CO_3 (91m g, 0.66 mmol) and Pd(PPh₃)₄ (10 mg, 8.8 µmol) in THF (10 mL) and deionized water (2 mL) was refluxed at 70 °C under N₂ for 24 h. After the

mixture was cooled down, 10 mL of deionized water was added to the resulting solution and the mixture was extracted with CH₂Cl₂ several times. The organic phase was dried over Na₂SO₄ and was further purified by column chromatography on silica gel using CH_2Cl_2 /petroleum ether (1/8, v/v) as eluent to give the product 9 (40 mg, yield: 29%) and *m*-BTT (35 mg, yield: 26%) as white solid. Melting point (Mp: 232°C for *m*-BTT). ¹H NMR (400 MHz, acetone-d₆) of 7: δ 8.20–8.10 (m, 3H), 8.02 (d, J = 9.0 Hz, 1H), 7.86-7.75 (m, 2H), 7.68-7.51 (m, 4H), 7.41-7.33 (m, 2H), 7.33-7.23 (m, 4H), 7.09-7.01 (m, 6H), 7.00–6.91 (m, 2H), 5.76 (s, 2H); *m*-BTT: ¹H NMR (101 MHz, CDCl₃) δ 7.97 (d, J = 9.0 Hz, 4H), 7.80 (s, 2H), 7.68 (m, 2H), 7.45 (d, J = 9.0 Hz, 2H), 7.24–7.15 (m, 12H), 7.09–6.95 (m, 12H), 6.92 (d, J = 8.0 Hz, 4H), 5.72 (s, 2H). ¹³C NMR (101 MHz, acetone-d₆) of **7**: δ 147.6, 147.5, 138.7, 134.5, 133.1, 132.0, 130.9, 130.9, 130.7, 130.4, 129.4, 129.4, 128.6, 128.2, 128.0, 125.3, 125.2, 124.6, 124.6, 123.3, 123.2, 123.2, 122.0, 120.9, 120.3, 103.3; *m*-BTT: ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 147.5, 147.1, 138.3, 134.8, 132.4, 130.8, 130.0, 129.2, 129.0, 127.9, 126.2, 124.6, 124.4, 124.3, 123.7, 122.9, 120.7, 103.2 ppm. ESI-HRMS (m/z): calcd. for 7: C₃₉H₂₆BrNO₂ [M+H]⁺ 620.1225, found 620.1226, calcd. for *m*-BTT: C₅₇H₄₀N₂O₂ [M+H]⁺ 785.3168, found 785.3157.

2.7 Synthesis of *m*-BTB

The mixture of 9 (100 mg, 0.16 mmol), 2-(4-(dimesitylboryl)phenyl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (110 mg, 0.24 mmol), Pd(PPh₃)₄ (10 mg, 9 µmol), toluene (6 mL), ethanol (2 mL) and 1 M K₂CO₃ aqueous solution (1 mL) in a roundbottom flask was stirred at 80 °C under N2 atmosphere for 8 h. The mixture was then cooled to r.t. and poured into water (100 mL). After extraction with CH₂Cl₂, the organic phase was dried over Na₂SO₄. Purification by column chromatography on silica using CH₂Cl₂/petroleum ether (1:4, v/v) as eluent yielded a white solid of *m*-BTB (57 mg, yield: 40%). Melting point (Mp: 202°C). ¹H NMR (400 MHz, CDCl₃) δ 8.04–7.95 (m, 4H), 7.92 (s, 1H), 7.82–7.73 (m, 2H), 7.72–7.64 (m, 1H), 7.46 (dd, J = 13.0, 9.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.23–7.11 (m, 6H), 7.06–6.94 (m, 6H), 6.90 (d, J = 8.0 Hz, 2H), 6.77 (s, 4H), 5.72 (s, 2H), 2.28 (s, 6H), 1.93 (s, 12H).¹³C NMR (101 MHz, CDCl3) δ 151.8, 151.8, 147.6, 147.1, 144.1, 141.6, 140.8, 138.6, 138.4, 138.2, 136.9, 134.8, 132.4, 132.3, 131.3, 130.8, 130.1, 130.0, 129.2, 129.0, 128.1, 128.0, 126.7, 126.5, 126.1, 125.4, 124.8, 124.71, 124.4, 124.2, 123.6, 122.9, 121.3, 120.7, 103.2, 23.4, 21.2. ¹¹B NMR (225 MHz, CDCl₃) δ 73 ppm. ESI-HRMS (m/z): calcd. for C₆₃H₅₂BNO₂ [M+H]⁺ 866.4169, found 866.4143.

Reference:

[1] N. Lv, M. Xie, W. Gu, H. Ruan, S. Qiu, C. Zhou and Z. Cui, *Org. Lett.*, 2013, **15**, 2382.

[2] (a) J.-W. Park, M. D. Ediger and M. M. Green, *J. Am. Chem. Soc.*, 2001, 123, 49;
(b) K. Takaishi, S. Hinoide, T. Matsumoto and T. Ema, *J. Am. Chem. Soc.*, 2019, 141, 11852.

[3] J.-K. Ou-Yang, Y.-Y. Zhang, M.-L. He, J.-Tao Li, X. Li, X.-L. Zhao, C.-H. Wang, Y. Yu, D.-X. Wang, L. Xu and H.-B. Yang, *Org. Lett.*, 2014, **16**, 664.

[4] (a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785; (b) A. D. Becke, J.

Chem. Phys. 1993, 98, 1372; (c) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.

[5] G. Scalmani and M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.

3. Characterization by NMR Spectroscopy

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of 4.

Figure S2. ¹³C NMR (101 MHz, CDCl₃) spectrum of 4.

3.2 NMR Spectra of *p*-BTT.

Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of *p*-BTT.

Figure S4. ¹³C NMR (101 MHz, CDCl₃) spectrum of *p*-BTT.

Figure S5. ¹H NMR (400 MHz, CDCl₃) spectrum of *p*-BTB.

Figure S6. ¹³C NMR (101 MHz, CDCl₃) spectrum of *p*-BTB.

Figure S7.¹¹B NMR (225 MHz, C_6D_6) spectrum of *p*-BTB.

Figure S8. ¹H NMR (400 MHz, CDCl₃) spectrum of 7.

Figure S9. ¹³C NMR (101 MHz, CDCl₃) spectrum of 7.

Figure S10. ¹H NMR (400 MHz, CDCl₃) spectrum of MeBTT.

Figure S11. ¹³C NMR (101 MHz, CDCl₃) spectrum of MeBTT.

Figure S12. ¹H NMR (400 MHz, CDCl₃) spectrum of MeBTB.

Figure S13. ¹³C NMR (101 MHz, CDCl₃) spectrum of MeBTB.

Figure S14.¹¹B NMR (225 MHz, C₆D₆) spectrum of MeBTB.

Figure S15. ¹H NMR (400 MHz, CDCl₃) spectrum of 8.

Figure S16. ¹³C NMR (101 MHz, CDCl₃) spectrum of 8.

Figure S17. ¹H NMR (400 MHz, Acetone-d6) spectrum of 9.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S18. ¹³C NMR (101 MHz, Acetone-d6) spectrum of 9.

3.9 NMR Spectra of *m*-BTT.

Figure S19. ¹H NMR (400 MHz, CDCl₃) spectrum of *m*-BTT.

Figure S20. ¹³C NMR (101 MHz, CDCl₃) spectrum of *m*-BTT.

Figure S21. ¹H NMR (400 MHz, CDCl₃) spectrum of *m*-BTB.

Figure S22. ¹³C NMR (101 MHz, CDCl₃) spectrum of *m*-BTB.

Figure S23.¹¹B NMR (225 MHz, CDCl₃) spectrum of *m*-BTB.

4. PL Spectra and Transient PL Decay Curves

Figure S24. Absorption and emission spectra of (a) MeBTT, (b)MeBTB, (c) *p*-BTT, (d) *p*-BTB, (e) *m*-BTT and (f) *m*-BTB in solvents ($c = 1.0 \times 10^{-5}$ M) of different polarities under N₂ at 298 K. Inset: photographs showing the emission colors of MeBTT, MeBTB, *p*-BTT, *p*-BTB, *m*-BTT and *m*-BTB in solutions (c = 0.01 mM) under 365 nm UV irradiation.

Figure S25. PL decay curves of (a) MeBTT, (b)MeBTB, (c) *p*-BTT, (d) *p*-BTB, (e) *m*-BTT and (f) *m*-BTB in solvents ($c = 1.0 \times 10^{-5}$ M) of different polarities under N₂ at 298 K.

Table S1. Absorption and emission properties of **MeBTT** in solvents ($c = 1.0 \times 10^{-5}$ M) of different polarities under N₂ at 298 K.

	Colvert	Solvent λ_{abs} (nm)	λ_{em}	Ф (9/)	τ (ns)		χ²
	Solvent	∧abs (IIIII)	(nm)	ΨΡL (70)	$ au_1$	τ _{ave.}	Kel 70	
Madtt	Hexane	335	384	60.5	2.57	2.57	100	1.293
MEB I I	Toulene	339	395	77.2	2.30	2.30	100	1.263
	DCM	335	422	81.4	2.98	2.98	100	1.188
	THF	336	408	85.5	2.84	2.84	100	1.251

Table S2. Absorption and emission properties of **MeBTB** in solvents ($c = 1.0 \times 10^{-5}$ M) of different polarities under N₂ at 298 K.

	Salmart	2 ()) ()	ሐ (0/)		τ (ns)		Dal 9/	χ²
	Solvent	Aabs (IIII)	Nem (IIII)	Ψ PL (70)	τ1	τ2	Tave.	Kel %	
	Hexane	341	384	61.3	2.02		2.02	100	1.228
MADTO	Toulene	343	403	80.5	2.26		2.26	100	1.291
МеВТВ	DCM	342	424	8.6	2.96	133.3	22.08	85.33/14.67	1.243
	DCM		580		6.61	136	133.53	1.91/98.09	1.132
		241	423	10.0	2.79	94.71	66.33	30.87/69.13	1.127
	THF	341	553	10.8	3.72	95.83	92.13	4.01/95.99	1.172

Table S3. Absorption and emission properties of *p*-BTT in solvents ($c = 1.0 \times 10^{-5}$ M) of different polarities under N₂ at 298 K.

	Salaraat	λabs (nm)	Arm (nm)	መ (በ/)	τ (ns)		χ^2
	Solvent	Λabs (IIII)	∧em (NM)	ΨPL (%0)	τ1	Tave.	Kei 70	
D TT	Hexane	336	386	63.2	1.99	1.99	100	1.283
р-втт	Toulene	338	403	82.6	2.33	2.33	100	1.233
	DCM	338	441	89.8	3.95	3.95	100	1.279
	THF	337	430	96.0	3.64	3.64	100	1.238

Table S4. Absorption and emission properties of *p*-**BTB** in solvents ($c = 1.0 \times 10^{-5}$ M) of different polarities under N₂ at 298 K.

n DTD	Solvent	2 (mm)) (nm)	መ (በ/)		τ (ns)		Dol 9/	w ²
р-вів	Solvent	Aabs (IIIII)	λ _{em} (IIII)	ΨΡL (70)	τ1	$ au_2$	Tave.	Kel %	X

Hexane	335	386	63.0	2.1		2.1	100	1.192
Toulene	337	404	81.6	3.15		3.15	100	0.995
DCM	222	445	15 1	4.17	221.50	158.65	28.92/71.08	1.123
DCM	332	577	15.1	3.26	223.90	223.02	0.40/99.60	1.100
THE	222	437	15.5	3.92	219.30	148.6	32.83/67.17	1.107
THF	552	555	15.5	9.76	222.30	219.11	1.50/98.50	1.046

Table S5. Absorption and emission properties of *m*-BTT in solvents ($c = 1.0 \times 10^{-5}$ M) of different polarities under N₂ at 298 K.

	Colvert) . (nm)	$\lambda_{em}(nm)$	Φ _{PL} (%)	τ	(ns)	Dol 9/	χ²
	Sorvent	Aabs (IIIII)		$\Psi_{PL}(\%)$	τ1	τ _{ave} .	Kel 70	
D TT	Hexane	337	399	69.6	2.48	2.48	100	1.260
<i>т</i> -віі	Toulene	336	416	88	2.75	2.75	100	1.212
	DCM	336	453	100	4.27	4.27	100	1.232
	THF	332	441	95.8	3.88	3.88	100	1.254

Table S6. Absorption and emission properties of *m*-BTB in solvents ($c = 1.0 \times 10^{-5}$ M) of different polarities under N₂ at 298 K.

		2 ()	2 ()	Фы (%)		τ (ns)		Dal 0/	χ²
		λ _{abs} (nm)	Nem (IIII)	ΨPL (%)	$ au_1$	$ au_2$	τ _{ave.}	Kei 70	
	Havana	222	399	21.4	1.69	22.24	21.29	4.61/95.39	1.252
m-BTB	Hexane	332	422	21.4	10.32	24.98	22.62	16.09/83.91	1.224
	Toulene	332	473	18.7	3.57	57.56	56.15	2.62/97.38	1.283
	DCM	332	545	6.1	5.62	76.01	74.46	2.20/97.80	1.039
	THF	332	538	6.3	124.8		124.8	100	1.235

Figure S26. Excitation spectra of (a) **MeBTB** and (b) *p*-**BTB** and (c) *m*-**BTB** in CH₂Cl₂ and THF ($c = 1.0 \times 10^{-5}$ M) under N₂ at 298 K.

	л г. н	(0/)		τ[ns]		D 1.0/	2
	λem [nm] in air	Ф РL (%)	τ1	τ2	τ3	Tave.	Kel %	χ
MeBTT	425	21	0.92	1.82		1.41	46.60/53.40	1.290
MeBTB	465	23	35.68	119.3		93.77	30.52/69.48	1.109
<i>p</i> -BTT	420	26	1.63	3.66		1.88	87.72/12.28	1.219
P-BTB	457	28	35.77	108.9		81.46	37.52/62.48	1.215
<i>m</i> -BTT	433	59	1.95	4.32		2.05	95.59/4.41	1.242
<i>m</i> -BTB	462	30	7.88	48.41	111.2	69.44	6.74/55.43/37.84	1.288

Table S7. Emission properties of MeBTT, MeBTB, *p*-BTT, *p*-BTB, *m*-BTT and *m*-BTB solid powder at 298 K.

Figure S27. PL spectra and decay curves of (a) **MeBTB**, (b) *p*-**BTB** and (c) *m*-**BTB** in oxygen-free and air-saturated CH₂Cl₂ ($c = 1.0 \times 10^{-5}$ M) at 298 K and PL decay curves of (d) **MeBTB**, (e) *p*-**BTB** and (f) *m*-**BTB** in air-saturated CH₂Cl₂ at 298 K.

Table S8. Emission properties of **MeBTB**, *p*-**BTB** and *m*-**BTB** in oxygen-free and airsaturated CH₂Cl₂ ($c = 1.0 \times 10^{-5}$ M) at 298 K

	A 4) []	··· (0/)	τ (θ()			Rel %	2
	Atmosphere	∧em [nm]	ΦΡL (%)	τ1	τ2	Tave.		X
	N	424	9.6	2.96	133.3	22.08	85.33/14.67	1.243
M.DTD	IN2	580	8.0	6.61	136	133.53	1.91/98.09	1.132
мевтв	A :	423	2.9	2.67	21.27	3.29	96.65/3.35	1.075
	Alf	580	3.8	3.78	24.86	22.96	9.02/90.98	1.141
р-ВТВ	N_2	445	15.1	4.17	221.5	158.65	28.92/71.08	1.123

		577		3.26	223.9	223.02	0.40/99.60	1.100
	A :	445	2.1	3.55	26.03	7.73	81.39/ 18.61	1.225
	Alf	577	5.1	4.44	27.23	25.99	5.44/94.56	1.163
	N	460	(1	4.88	74.01	59.59	20.86/79.14	1.128
DTD	1N2	545	0.1	5.62	76.01	74.46	2.20/97.80	1.039
<i>т</i> -вів	A.'	460	2	4.22	25.85	11.44	66.62/33.38	1.040
	Alf	537	3	4.96	28.85	26.93	8.02/91.98	1.146

Figure S28. Fluorescence and phosphorescence spectra of MeBTB, *p*-BTB and *m*-BTB in MTHF at 77 K.

5. Chiral HPLC Trace Analysis

Figure S29. HPLC chromatogram used for chiral resolution of enantiomers of *p*-**BTT** by a preparative HPLC equipped with a Daicel Chiralpak IF column with *n*-hexane/isopropanol = 95:5, flow = 3.0 mL/min.

Figure S30. HPLC chromatogram used for chiral resolution of enantiomers of *p*-**BTB** by a preparative HPLC equipped with a Daicel Chiralpak IF column with *n*-hexane/isopropanol = 95:5, flow = 3.0 mL/min.

Figure S31. HPLC chromatogram used for chiral resolution of enantiomers of *m*-**BTT** by a preparative HPLC equipped with a Daicel Chiralpak IB column with *n*-hexane/isopropanol = 90:10, flow = 3.0 mL/min.

Figure S32. HPLC chromatogram used for chiral resolution of enantiomers of *m*-**BTB** by a preparative HPLC equipped with a Daicel Chiralpak IB column with *n*-hexane/isopropanol = 90:10, flow = 3.0 mL/min.

	Fraction	Retention Time / min	Area / %	Enantiomeric excess (ee)	$[\alpha] / ^{\circ}$ T =25 °C $\lambda = 589 \text{ nm}$
ngo n D TT	Peak1	18.8	49.94	-	-
<i>rac-р-Б</i> ТТ	Peak2	35.8	50.06	-	-
enantiopure	(<i>S</i>)- <i>p</i> -BTT	19.3	100	>99%	+563
<i>p</i> -BTT	(<i>R</i>)- <i>p</i> -BTT	37.0	100	>99%	-616
ugo n DTD	Peak1	13.3	49.83	-	-
<i>rac-р-</i> д і д	Peak2	33.9	50.17	-	-
enantiopure	(S)- <i>p</i> -BTB	13.2	100	>99%	+488
p-BTB	(<i>R</i>)- <i>p</i> -BTB	34.0	100	>99%	-521
	Peak1	14.3	50.3	-	-
rac- m-B11	Peak2	64.8	49.7	-	-
enantiopure	(<i>R</i>)- <i>m</i> -BTT	14.8	100	>99%	-1262
<i>m</i> -BTT	(S)- <i>m</i> -BTT	68.9	100	>99%	+1044
DTD	Peak1	11.7	49.36	-	-
rac- m-B1B	Peak2	41.6	50.64	-	-
enantiopure	(<i>R</i>)- <i>m</i> -BTB	11.6	100	>99%	-1174
<i>m</i> -BTB	(S)- <i>m</i> -BTB	43.6	100	> 99%	+1084

Table S9. Summary of the HPLC analysis of *p*-BTT, *p*-BTB, *m*-BTT and *m*-BTB.

6. CPL Spectra in Different Solutions

Figure S33. CPL spectra of enantiomers for (a) *p*-**BTT**, (b) *p*-**BTB**, after optical resolution in solvents (c = 0.01 mM) with different polarities under N₂ at 298 K.

Figure 34. CPL spectra of enantiomers for *p***-BTT** and *p***-BTB** neat films after optical resolution at 298 K.

		2	λem	${oldsymbol{\varPhi}}_{ ext{PL}}$	glum $10^{-3} (\lambda_{em}/nm)$	
Compound	Solvents	∕abs			(+)-BNPh2-BNaph	(-)-BNPh ₂ -BNaph
BMes ₂ //,	cyclohexane	398	440	0.75	-1.17 (455)	+1.53 (453)
				0.40	-0.25(450)	+0.53 (463)
	benzene	398	456	0.68	+0.42(519)	-0.33 (521)
NPh ₂	chloroform	296	472	0.58		
BMes ₂					-0.46 (446)	+0.29 (463)
BNPh2-BNaph	THF	396	396 482		+0.74(510)	-0.46 (528)
	MOE	396	487	0.52		
	MeCN	390	512	0.26	+1.19 (524)	-0.52 (521)

Table S10. Summary of the photophysical and chiroptical data of **BNPh2-BNaph** in various solvents reported by Zhao and Peng (see *ACIE*, 2019, *58*, 4840–4846).

7. Thermochromic Emissions and Aggregation-induced Emission

Properties

Figure S35. Temperature-dependent spectra and plot of relative PL intensity ($\alpha I/I_0$) at λ_{max} versus T of (a, d) **MeBTT**, (b, e) *p*-**BTT** and (c, f) *m*-**BTT** in 2-MeTHF (c = 0.03 mM) recorded between 150 and 345 K under N₂ atmosphere, where I_0 = emission intensity at 150 K, I = emission intensity at different temperature.

Figure S36. Temperature-dependent transient decay spectra of (a) **MeBTB**, (b) *p*-**BTB** and (c) *m*-**BTB** in MTHF (c = 0.03 mM) recorded between 150 and 345 K under N₂.

Table S11. Temperature-dependent photophysical properties and fitting results of temperature-dependent transient decay spectra of **MeBTB** in MTHF (c = 0.03 mM) under N₂.

	λmax	τ [ns]			~ ²		
T[K]	[nm]	$ au_1$	$ au_2$	τ _{ave.}	Kel %	χ ²	CIE [x,y]
150	632	523.10		523.10	100	1.217	[0.34, 0.22]
180	620	356.70		356.70	100	1.166	[0.35, 0.25]
210	585	196.60		196.60	100	1.064	[0.32, 0.28]
240	558	5.91	125.00	122.22	2.33/97.67	1.136	[0.29, 0.29]
270	530	3.86	85.61	82.50	3.81/96.19	1.058	[0.23, 0.23]
300	425	2.77	60.78	54.81	10.30/89.70	1.075	[0.19,0.14]
330	422	2.73	42.45	40.85	4.03/95.97	1.078	[0.17,0.08]
345	421	3.07	32.55	31.69	2.93/97.07	1.206	[0.16,0.06]

Table S12. Temperature-dependent photophysical properties and fitting results of temperature-dependent transient decay spectra of *p*-**BTB** in MTHF (c = 0.03 mM) under N₂.

	λ_{max}	τ [ns]			D-10/	~ ²	CIE [x.v]
I[K]	[nm]	τ1	$ au_2$	τ _{ave} .	Rel %	χ-	CIE [X,Y]
150	647	368.80		368.80	100	1.121	[0.46, 0.31]
180	624	537.90		537.90	100	1.088	[0.50, 0.39]
210	596	521.00		521.00	100	1.214	[0.47, 0.45]
240	570	345.90		345.90	100	1.217	[0.41, 0.47]
270	545	216.70		216.70	100	1.017	[0.34, 0.45]
300	528	141.90		141.90	100	1.289	[0.26, 0.32]
330	500	87.27		87.27	100	1.104	[0.19, 0.15]
345	416	3.87	68.26	66.12	3.32/96.68	1.035	[0.18,0.10]

under N ₂	•						
(T) (T/2)	λ_{max}	λ_{\max} τ [ns]			-2		
I[K]	[nm]	$ au_1$	$ au_2$	τ _{ave.}	Kel %	χ	CIE [x,y]
150	615	468.00		468.00	100	1.170	[0.50, 0.42]
180	596	345.70		345.70	100	1.194	[0.47, 0.45]
210	570	226.10		226.10	100	1.061	[0.42, 0.47]
240	552	161.90		161.90	100	1.113	[0.37, 0.49]
270	536	123.20		123.20	100	1.123	[0.32, 0.48]
300	519	99.38		99.38	100	1.173	[0.27, 0.42]
330	503	6.91	85.93	84.46	1 86/98 1/	1 185	[0.22, 0.33]

73.91

2.25/97.75

1.172

[0.20, 0.28]

345

492

4.31

78.58

Table S13. Temperature-dependent photophysical properties and fitting results of temperature-dependent transient decay spectra of *m*-**BTB** in MTHF (c = 0.03 mM) under N₂.

Figure 37. (a, c) Emission spectra of *p*-**BTB** and *m*-**BTB** ($c = 1.0 \times 10^{-5}$ M) in THF/water mixtures with different water content. (b, d) Plot of relative PL intensity (α_{AIE}) at λ_{max} versus f_w of the THF/water mixtures of *p*-**BTB** and *m*-**BTB**, where $\alpha_{AIE} = I/I_0$ and $I_0 =$ emission intensity in pure THF solution. Inset: photographs of *p*-**BTB** and *m*-**BTB** in THF and THF/water mixtures with different water content taken under 365 nm UV light.

8. DFT and TD-DFT Computations and Electrochemical

Measurements

DFT and TD-DFT calculations were performed using the Gaussian 09 suite of programs.^[6] Geometry optimizations and vertical excitations of all compounds were obtained at the CAM-B3LYP/6-31G* and (TD) CAM-B3LYP/6-31G* level of theory, ^[7, 8] and the resulting structures were confirmed to be stationary points through vibrational frequency analysis.

Figure S38. The DFT optimized structures and frontier molecular orbital plots of MeBTT, *p*-BTT and *m*-BTT (iso = 0.02, CAM-B3LYP/6-31G*) in the ground state. Hydrogen atoms are omitted. (b) Cyclic voltammetry of MeBTT, *p*-BTT and *m*-BTT showing the oxidation waves in CH₂Cl₂ (*vs* Fc⁺/Fc) with *n*-Bu₄NPF₆ (*c* = 0.1 M) as the electrolyte, v = 100 mV/s.

Figure S39. The optimized structures (CAM-B3LYP/6-31G*) in the ground state. Hydrogen atoms are omitted. The angles between the adjacent aryl rings are shown for comparison.

		Respect	Berger
LUMO+3	LUMO+2	LUMO+1	LUMO
		Stree Capital	Some Contraction
HOMO-3	HOMO-2	HOMO-1	НОМО

Figure S40. Molecular orbitals contributing to the DFT calculated transitions of MeBTT (iso = 0.02, CAM-B3LYP/6-31G*) in the ground state.

Figure S41. Molecular orbitals contributing to the DFT calculated transitions of MeBTB (iso = 0.02, CAM-B3LYP/6-31G*) in the ground state.

Figure S42. Molecular orbitals contributing to the DFT calculated transitions of *p*-**BTT** (iso = 0.02, CAM-B3LYP/6-31G*) in the ground state.

Figure S43. Molecular orbitals contributing to the DFT calculated transitions of p-BTB (iso = 0.02, CAM-B3LYP/6-31G*) in the ground state.

Figure S44. Molecular orbitals contributing to the DFT calculated transitions of m-BTT (iso = 0.02, CAM-B3LYP/6-31G*) in the ground state.

LUMO+3	LUMO+2	LUMO+1	LUMO
HOMO-3	HOMO-2	HOMO-1	HOMO

Figure S45. Molecular orbitals contributing to the DFT calculated transitions of m-BTB (iso = 0.02, CAM-B3LYP/6-31G*) in the ground state.

Table S14. Summary of the TD-DFT calculations about selected transitions and oscillator strengths in CH₂Cl₂ (CAM-B3LYP/6-31G*) in the ground state.

Compound	Transition	λ, nm (eV)	Oscillator Strength, <i>f</i>	Orbital Contributions
MeDTT	$S_0 \rightarrow S_1$	4.0247 (308.06)	0.7263	HOMO→LUMO+1 (34%) HOMO-1→LUMO (27%)
МеВТТ	$S_0 \rightarrow S_2$	4.0248 (308.05)	0.9033	HOMO→LUMO (31%) HOMO-1→LUMO+1 (30%)

				HOMO→LUMO+2 (31%)
	$S_0 \rightarrow S_3$	4.21 (295)	0.8960	HOMO-1→LUMO+3 (20%)
				HOMO-2→LUMO (15%)
	C .C	4 21 (297)	0 1671	HOMO-1→LUMO+2 (28%)
	$S_0 \rightarrow S_4$	4.31 (287)	0.1071	HOMO→LUMO+3 (24%)
	$S_0 \rightarrow S_5$	4.45 (279)	0.0446	HOMO→LUMO+2 (55%)
	$S_0 \rightarrow S_1$	3.98 (312)	1.0146	HOMO-1→LUMO (58%)
	$S_0 \rightarrow S_2$	4.02 (308)	0.7979	HOMO→LUMO+1 (62%)
	$S_0 \rightarrow S_3$	4.10 (303)	0.1431	HOMO-3→LUMO (85%)
				HOMO-1→LUMO+2 (30%)
MeBTB	$S_0 \rightarrow S_4$	4.20 (295)	0.6392	HOMO→LUMO+3 (21%)
				HOMO-1→LUMO+1 (12%)
	$S_0 \rightarrow S_5$	4.30 (288)	0.1080	HOMO-3→LUMO (96%)
	0 0	4.41(201)	0.0105	HOMO-4→LUMO (54%)
	$S_0 \rightarrow S_6$	4.41(281)	0.0125	HOMO-1→LUMO (12%)
				HOMO-1→LUMO+1 (33%)
	$S_0 \rightarrow S_1$	4.02 (309)	0.7008	HOMO→LUMO (28%)
	-			HOMO→LUMO+2 (15%)
	$S_0 \rightarrow S_2$	4.04(307)		HOMO→LUMO+1 (32%)
			1.0888	HOMO-1→LUMO (30%)
				HOMO-1→LUMO+2 (13%)
	C .C	4 20(205)	0.9254	HOMO-2→LUMO+1 (53%)
<i>р-</i> ВТТ	$S_0 \rightarrow S_3$	4.20(293)	0.8234	HOMO→LUMO+2 (13%)
		4.33(286)	0.1377	HOMO-1→LUMO+2 (17%)
	S. S.			HOMO→LUMO+3 (17%)
	$S_0 \rightarrow S_4$			HOMO-3→LUMO (10%)
				HOMO-2→LUMO+3 (10%)
				HOMO-2→LUMO (17%)
	$S_0 \rightarrow S_5$	4.43(280)	0.0404	HOMO-4→LUMO (15%)
				HOMO-1→LUMO (10%)
	$S_0 \rightarrow S_6$	4.46(278)	0.0302	HOMO→LUMO (41%)
				HOMO→LUMO+1 (38%)
	$S_0 \rightarrow S_1$	4.02(308)	0.8039	HOMO→LUMO+2 (24%)
				HOMO→LUMO+3 (14%)
				HOMO-3→LUMO (33%)
	$S_0 \rightarrow S_2$	4 077(304)	0 5850	HOMO-1→LUMO (19%)
<i>р-</i> ВТВ	20 .02		0.0000	HOMO-2→LUMO (12%)
				HOMO-4→LUMO (11%)
				HOMO-3→LUMO (47%)
	$S_0 \rightarrow S_3$	4.083(304)	0.5000	HOMO-1→LUMO (12%)
				HOMO-2→LUMO (12%)
	$S_0 \rightarrow S_4$	4.21(294)	0.7265	HOMO-1→LUMO+1 (47%)

				HOMO→LUMO+3 (11%)
	C ,C	4 25(285)	0.0210	HOMO-1→LUMO+1 (15%)
	$3_0 \rightarrow 3_5$	4.33(283)	0.0210	HOMO→LUMO+3 (14%)
	C ,C	4 41(281)	0.0020	HOMO-4→LUMO (22%)
	$S_0 \rightarrow S_6$	4.41(281)	0.0029	HOMO-1→LUMO (14%)
				HOMO→LUMO (42%)
	$S_0 \rightarrow S_1$	3.78(328)	0.3943	HOMO-1→LUMO+1 (20%)
				HOMO-2→LUMO (20%)
	G . G	2.07(212)	1 2107	HOMO-1→LUMO (36%)
	$S_0 \rightarrow S_2$	3.97(312)	1.2197	HOMO→LUMO+1 (34%)
	G . G	4.21(205)	0.5207	HOMO-2→LUMO (54%)
<i>m</i> -BTT	$S_0 \rightarrow S_3$	4.21(295)	0.5507	HOMO-1→LUMO+1 (18%)
	а а	4 20(200)	0.0240	HOMO→LUMO+3 (12%)
	$S_0 \rightarrow S_4$	4.30(288)	0.0240	HOMO-2→LUMO+1 (10%)
	$S_0 \rightarrow S_5$			HOMO-2→LUMO+2 (17%)
		4.35(285)	0.1006	HOMO-5→LUMO (14%)
				HOMO-1→LUMO+3 (11%)
	$S_0 \rightarrow S_6$	4.43(279.4)	0.0133	HOMO-1→LUMO (40%)
		3.89(319)		HOMO→LUMO+1 (35%)
	$S_0 \rightarrow S_1$		0.2830	HOMO-1→LUMO (19%)
				HOMO-1→LUMO+1 (12%)
	$S_0 \rightarrow S_2$	4.09(303)	0.2739	HOMO-3→LUMO (56%)
				HOMO-3→LUMO (19%)
		4 10(202)	1 0020	HOMO-1→LUMO (18%)
	$S_0 \rightarrow S_3$	4.10(302)	1.0038	HOMO→LUMO+1 (14%)
<i>m</i> -BTB				HOMO-2→LUMO (10%)
				HOMO→LUMO (27%)
	$S_0 \rightarrow S_4$	4.24(293)	0.2850	HOMO-1→LUMO+1 (15%)
				HOMO-2→LUMO (13%)
	с , с	4 22(287)	0.0914	HOMO→LUMO (56%)
	$\mathfrak{s}_0 \rightarrow \mathfrak{s}_5$	4.32(207)	0.0814	HOMO-1→LUMO+1 (14%)
	Q .Q	1 27(294)	0.0022	HOMO-4→LUMO (15%)
	$S_0 \rightarrow S_6$	4.37(284)	0.0022	HOMO-6→LUMO+1 (10%)

	E _{HOMO} ^a	E_{LUMO}^{a}	${\rm E_{gap}}^b$	E_{TD-DFT}^{c}
	(eV)	(eV)	(eV)	(eV)
MeBTT	-6.19	0.01	6.20	4.02
MeBTB	-6.21	-0.67	5.54	3.98
<i>p</i> -BTT	-6.28	-0.33	5.95	4.02
p-BTB	-6.28	-0.74	5.54	4.02
<i>m</i> -BTT	-6.27	-0.37	5.90	3.78
<i>m</i> -BTB	-6.30	-0.73	5.57	2.89

Table S15. Summary of the DFT calculations (CAM-B3LYP/6-31G*) in the ground state.

^{*a*} Obtained by DFT calculation (CAM-B3LYP/6-31G*). ^{*b*} HOMO-LUMO energy gap: $E_{gap} = E_{LUMO}$ - E_{HOMO} . ^{*c*} $E_{gap} = E_{LUMO} - E_{HOMO}$ (CAM-B3LYP/6-31G*). ^{*c*} Vertical excitation of the lowest transition (S₀ \rightarrow S₁) calculated by TD-DFT (CAM-B3LYP/6-31G*).

Atom	Х	Y	Z	Atom	Х	Y	Z
С	0.513193	3.709554	0.541101	С	-10.0986	-0.51886	0.877855
С	0.355223	4.538031	1.638067	Н	3.149614	3.763845	3.411747
0	-0.75789	5.318935	1.652362	Н	1.182098	5.208049	3.533263
0	0.757907	5.318882	-1.65242	Н	-1.18212	5.208032	-3.53327
С	-0.35522	4.537997	-1.63809	Н	-3.14965	3.763819	-3.41173
С	-0.51319	3.709556	-0.54111	Н	1.162567	1.959141	-1.43598
С	1.658222	2.868992	0.464839	Н	3.130245	0.520873	-1.52013
С	2.621483	2.881731	1.511293	Н	4.48888	2.090431	2.23368
С	2.416463	3.747163	2.610481	Н	-4.48888	2.090421	-2.23366
С	1.314314	4.555739	2.679442	Н	-3.13023	0.520903	1.520171
С	-1.31433	4.55571	-2.67946	Н	-1.16258	1.959159	1.436009
С	-2.41648	3.747145	-2.61048	Н	5.209965	-0.1227	2.392692
С	-2.62149	2.88172	-1.51128	Н	7.206802	-1.54064	2.273966
С	-1.65823	2.868995	-0.46483	Н	7.37741	-0.9439	-1.96753
С	1.889085	1.993872	-0.63166	Н	5.41887	0.522484	-1.84118
С	2.9963	1.194127	-0.67921	Н	-5.41882	0.522382	1.841225
С	3.965885	1.199313	0.362662	Н	-7.37735	-0.944	1.967568

Table S16. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of**MeBTT** in the ground state.

С	3.759018	2.040802	1.430297	Н	-7.20687	-1.54053	-2.27397
С	-3.75902	2.040801	-1.43027	Н	-5.21004	-0.1226	-2.39269
С	-3.96589	1.199315	-0.36263	Н	9.947832	-3.85246	-1.48511
С	-2.99631	1.194146	0.679235	Н	9.615439	0.249069	-0.28343
С	-1.88909	1.993897	0.631678	Н	11.47955	0.842429	-1.78621
С	5.157163	0.320451	0.287212	Н	12.61084	-0.9137	-3.13231
С	5.688956	-0.28265	1.431844	Н	11.83495	-3.26849	-2.9629
С	6.813224	-1.09145	1.368704	Н	-10.6981	-3.06425	-1.42387
С	7.437946	-1.34608	0.144417	Н	-10.8238	-5.12601	-2.77346
С	6.907572	-0.75885	-1.00777	Н	-8.83246	-6.59448	-3.0046
С	5.794307	0.06431	-0.93147	Н	-6.72052	-5.97579	-1.85027
С	-5.79428	0.064253	0.931507	Н	-6.60894	-3.93139	-0.47382
С	-6.90754	-0.75891	1.007796	Н	-11.4795	0.842424	1.786309
С	-7.43795	-1.34608	-0.1444	Н	-12.6109	-0.91373	3.132303
С	-6.81327	-1.09139	-1.36869	Н	-11.835	-3.26854	2.962795
С	-5.689	-0.28259	-1.43183	Н	-9.94792	-3.85249	1.485011
С	-5.15717	0.320453	-0.28718	Н	-9.61538	0.24908	0.283525
Ν	8.578533	-2.18061	0.073258	С	8.645549	-3.35992	0.857725
Ν	-8.57854	-2.18062	-0.07326	С	7.529373	-4.19165	0.985306
С	9.655263	-1.8413	-0.78435	С	9.829921	-3.70819	1.513324
С	-8.64554	-3.35992	-0.85773	С	7.597444	-5.34177	1.761194
С	-9.65527	-1.84131	0.78435	Н	6.608963	-3.93143	0.473815
С	10.29043	-2.82525	-1.54749	С	9.895466	-4.86992	2.271939
С	10.09863	-0.51886	-0.8778	Н	10.69813	-3.06422	1.423867
С	11.14888	-0.18995	-1.72524	С	8.780314	-5.69138	2.405202
С	11.78571	-1.17267	-2.47682	Н	6.720587	-5.97584	1.850239
С	11.35242	-2.49122	-2.37817	Н	10.8238	-5.12599	2.77343
С	-9.8299	-3.7082	-1.51334	Н	8.832536	-6.5945	3.00456
С	-9.89542	-4.86993	-2.27196	С	-0.97818	6.177833	2.756413
С	-8.78025	-5.69137	-2.40523	Н	-1.07055	5.615992	3.692337
С	-7.59739	-5.34174	-1.76122	Н	-0.17869	6.920142	2.85572
С	-7.52934	-4.19163	-0.98532	Н	-1.91847	6.689888	2.552246
С	-11.1489	-0.18996	1.725295	С	0.978147	6.177837	-2.75643
С	-11.7857	-1.1727	2.476816	Н	1.918467	6.689851	-2.55229
С	-11.3525	-2.49126	2.378112	Н	1.070448	5.616055	-3.6924
С	-10.2905	-2.82528	1.547431	Н	0.178658	6.920165	-2.85564

Atom	Х	Y	Z	Atom	Х	Y	Z
С	1.763917	3.786381	0.321871	1	-0.07261	2.263775	1.313797
С	1.608876	4.66022	1.383823	1	6.311884	-0.10303	2.421381
0	0.520793	5.474801	1.344353	Н	8.267873	-1.58056	2.397173
0	2.192508	5.165731	-1.99699	Н	8.522426	-1.17259	-1.86258
С	1.01388	4.491265	-1.94359	Н	6.606542	0.353448	-1.8319
С	0.762528	3.779471	-0.78331	Н	-4.43661	1.261149	1.736628
С	2.882741	2.907715	0.303347	Н	-6.55084	0.037251	1.924309
С	3.824387	2.932109	1.36893	Н	-6.32859	-0.99425	-2.22993
С	3.623754	3.844799	2.430158	Н	-4.22582	0.251116	-2.42849
С	2.545885	4.688028	2.444988	Н	10.99415	-4.13252	-1.21392
С	0.078654	4.503519	-3.00686	Н	10.76891	0.026462	-0.19954
С	-1.09371	3.806556	-2.89666	Н	12.66929	0.497432	-1.70031
С	-1.39439	3.061234	-1.73325	Н	13.76481	-1.34932	-2.95135
С	-0.45434	3.052322	-0.6658	Н	12.91699	-3.67051	-2.68906
С	3.10736	1.981871	-0.75184	Н	-10.5996	-3.44638	-3.38044
С	4.189703	1.14749	-0.74453	Н	-6.99426	-5.44058	-2.2586
С	5.139246	1.166033	0.315478	Н	-10.7252	1.638131	2.403719
С	4.937068	2.055113	1.344764	Н	-10.5599	-2.38016	3.839047
С	-2.60342	2.333491	-1.61133	С	9.679168	-3.49614	1.088581
С	-2.90322	1.609604	-0.48123	С	8.538861	-4.29049	1.238934
С	-1.95694	1.606223	0.58159	С	10.84481	-3.84488	1.77666
С	-0.7807	2.296131	0.493258	С	8.564785	-5.40366	2.069359
С	6.305058	0.250707	0.298308	Н	7.632831	-4.03013	0.702442
С	6.800929	-0.31761	1.476383	С	10.86815	-4.97047	2.590268
С	7.901969	-1.16007	1.466891	Н	11.73162	-3.22961	1.669455
С	8.538317	-1.48506	0.265382	С	9.728953	-5.75404	2.74621
С	8.043363	-0.93308	-0.91958	Н	7.669611	-6.00883	2.175572
С	6.953743	-0.07581	-0.89725	Н	11.78241	-5.22745	3.116545
С	-4.84407	0.762173	0.862815	Н	9.748185	-6.6286	3.388372
С	-6.0427	0.072313	0.964814	В	-7.96123	-1.37162	-0.01268
С	-6.61787	-0.58121	-0.13678	С	-9.07124	1.433613	0.355928
С	-5.92538	-0.49184	-1.35524	Н	-8.14974	1.929521	0.678136
С	-4.73902	0.215778	-1.47252	Н	-8.90245	1.089267	-0.66644
С	-4.17303	0.854978	-0.36258	Н	-9.85899	2.191711	0.326429

Table S17. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of **MeBTB** in the ground state.

Ν	9.655112	-2.35369	0.248961	С	-8.90364	-3.40389	2.039056
С	10.75275	-2.08439	-0.60718	Н	-9.13095	-3.87245	1.078416
С	-8.27583	-2.51312	-1.06188	Н	-7.81973	-3.47236	2.181831
С	-8.95946	-1.00278	1.157962	Н	-9.37221	-4.00008	2.826366
С	11.36811	-3.1196	-1.31682	С	-11.6728	0.037947	4.39307
С	11.23663	-0.781	-0.75245	Н	-12.3572	-0.78298	4.626437
С	12.30714	-0.52107	-1.59853	Н	-11.111	0.26034	5.307916
С	12.92392	-1.55456	-2.29686	Н	-12.2687	0.922637	4.152765
С	12.45029	-2.85419	-2.14621	С	-10.4528	-1.35973	-1.75072
С	-9.44851	-2.48444	-1.85173	Н	-10.8311	-1.24234	-0.73238
С	-9.69479	-3.4943	-2.77869	Н	-10.0158	-0.39905	-2.04435
С	-8.8244	-4.56727	-2.9488	Η	-11.3051	-1.54261	-2.41023
С	-7.6812	-4.60291	-2.15907	6	-6.10386	-3.73751	-0.44861
С	-7.38672	-3.59609	-1.23984	Н	-5.27642	-3.21203	-0.93667
С	-10.3395	0.623587	2.330559	Н	-6.1806	-3.3331	0.562645
С	-10.7452	-0.32386	3.262905	Н	-5.82052	-4.79061	-0.36591
С	-10.2525	-1.61868	3.12574	С	-9.10588	-5.64205	-3.96572
С	-9.38584	-1.97272	2.094778	Н	-8.74222	-5.35041	-4.95807
С	-9.4513	0.313428	1.300682	Н	-8.61252	-6.58132	-3.70092
Н	4.340606	3.87005	3.245821	Н	-10.179	-5.83305	-4.05832
Н	2.416136	5.375984	3.270747	С	0.305003	6.382567	2.409604
Н	0.284595	5.065061	-3.90917	Н	-0.61464	6.914347	2.165741
Н	-1.80908	3.819247	-3.71382	Н	0.176414	5.860896	3.364291
Н	2.395233	1.935248	-1.56831	Н	1.125014	7.103658	2.497219
Н	4.318222	0.436463	-1.55465	С	2.511289	5.899759	-3.16556
Н	5.651985	2.115225	2.160746	Н	2.569302	5.250582	-4.04601
Н	-3.31184	2.378159	-2.43374	Н	1.785214	6.698902	-3.35016
Н	-2.16559	1.021516	1.471877	Н	3.490518	6.341449	-2.98133

Table S18. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of p-**BTT** in the ground state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	0	7.68611	0	С	10.1571	-2.8144	-3.2259
С	-0.6406	4.74429	-0.3781	С	9.56677	-3.9562	-2.6932
С	-0.9364	5.85542	-1.1398	С	8.6878	-3.8618	-1.6217
0	-0.0444	6.90768	-1.1734	С	9.00212	-1.4732	-1.5837
0	0.04444	6.90767	1.1734	Н	-0.8959	8.30517	0.10403

С	0.93639	5.85542	1.13978	Н	0.89588	8.30517	-0.104
С	0.64061	4.74429	0.37809	Н	-3.8883	4.96291	-2.5471
С	-1.6119	3.69462	-0.3109	Н	-2.2509	6.83839	-2.5284
С	-2.7838	3.77505	-1.1152	Н	2.25088	6.83839	2.52839
С	-2.9927	4.91345	-1.9351	Н	3.88828	4.9629	2.54706
С	-2.0981	5.94618	-1.9311	Н	-0.6278	2.5096	1.21219
С	2.09808	5.94617	1.93106	Н	-2.3084	0.75645	1.26934
С	2.99272	4.91345	1.93506	Н	-4.6325	2.82982	-1.678
С	2.78382	3.77505	1.11519	Н	4.63246	2.82981	1.67801
С	1.61188	3.69462	0.31092	Н	2.30838	0.75645	-1.2693
С	-1.4912	2.58094	0.56209	Н	0.62775	2.5096	-1.2122
С	-2.4438	1.60057	0.60089	Н	-5.0441	0.61591	-2.2897
С	-3.596	1.64904	-0.2294	Н	-6.7464	-1.1449	-2.2077
С	-3.7436	2.73471	-1.061	Н	-6.094	-1.5776	2.00789
С	3.74361	2.7347	1.06096	Н	-4.4364	0.22245	1.9373
С	3.59603	1.64903	0.22943	Н	4.43639	0.22245	-1.9373
С	2.4438	1.60057	-0.6009	Н	6.09398	-1.5776	-2.0079
С	1.49119	2.58094	-0.5621	Н	6.74635	-1.1449	2.20768
С	-4.6071	0.56635	-0.1825	Н	5.04405	0.61591	2.28966
С	-5.2793	0.15191	-1.3369	Н	-8.2196	-4.7532	1.21838
С	-6.2373	-0.8491	-1.2971	Н	-8.7893	-0.5054	1.14265
С	-6.5453	-1.4916	-0.0939	Н	-10.323	-0.6745	3.06784
С	-5.8708	-1.0926	1.06408	Н	-10.838	-2.8905	4.06769
С	-4.9272	-0.0779	1.01689	Н	-9.7801	-4.9305	3.12211
С	4.92724	-0.0779	-1.0169	Н	9.75262	-3.4144	1.18041
С	5.87075	-1.0926	-1.0641	Н	9.91771	-5.0644	3.00806
С	6.54533	-1.4916	0.09385	Н	7.86034	-6.0387	4.00436
С	6.23733	-0.8491	1.29705	Н	5.63814	-5.3506	3.13078
С	5.2793	0.15191	1.33693	Н	5.47857	-3.7267	1.27994
С	4.60711	0.56635	0.18255	Н	10.3234	-0.6745	-3.0678
Ν	-7.5135	-2.5205	-0.0495	Н	10.8377	-2.8905	-4.0677
Ν	7.5135	-2.5206	0.04948	Н	9.78007	-4.9305	-3.1221
С	-8.4004	-2.6178	1.05337	Н	8.21957	-4.7532	-1.2184
С	7.60488	-3.4601	1.10833	Н	8.78926	-0.5054	-1.1426
С	8.4004	-2.6178	-1.0534	С	-7.6049	-3.4601	-1.1083
С	-8.6878	-3.8618	1.62171	С	-6.4501	-4.0157	-1.6662
С	-9.0021	-1.4732	1.58374	С	-8.8528	-3.8459	-1.6054
С	-9.8653	-1.5738	2.66738	С	-6.5452	-4.9297	-2.7079

С	-10.157	-2.8144	3.22593	Н	-5.4786	-3.7267	-1.2799
С	-9.5668	-3.9562	2.6932	С	-8.9403	-4.7749	-2.6344
С	8.85279	-3.8459	1.6054	Н	-9.7526	-3.4144	-1.1804
С	8.94028	-4.7749	2.63438	С	-7.789	-5.3188	-3.1955
С	7.78902	-5.3188	3.19555	Н	-5.6381	-5.3506	-3.1308
С	6.54523	-4.9297	2.70788	Н	-9.9177	-5.0645	-3.0081
С	6.45006	-4.0157	1.66624	Н	-7.8603	-6.0387	-4.0043
С	9.86529	-1.5738	-2.6674				

Table S19. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of p-**BTB** in the ground state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	1.756593	7.925283	-0.08356	Н	1.833297	2.698794	-1.24031
С	2.076259	4.935653	0.327897	Н	3.319882	0.778357	-1.2728
С	2.484978	6.016873	1.080179	Н	5.837938	2.62368	1.665522
0	1.709931	7.158395	1.097459	Н	-3.36186	3.576002	-1.73838
0	1.633807	7.14293	-1.24964	Н	-1.28996	1.30166	1.248253
С	0.634497	6.193011	-1.21046	Н	0.573285	2.860145	1.176521
С	0.806309	5.064658	-0.43601	Н	6.017408	0.386277	2.296321
С	2.930776	3.788159	0.276265	Н	7.532604	-1.53839	2.233595
С	4.101009	3.752517	1.086074	Н	6.847965	-1.93851	-1.97899
С	4.425401	4.870452	1.896423	Н	5.381134	0.020589	-1.9279
С	3.645548	5.991843	1.877541	Н	-3.46557	1.040452	1.916654
С	-0.50689	6.399686	-2.00938	Н	-5.34617	-0.52771	2.010264
С	-1.5075	5.469932	-2.0075	Н	-5.85895	-0.17614	-2.22938
С	-1.42545	4.325026	-1.17456	Н	-3.99324	1.413357	-2.32504
С	-0.27256	4.126558	-0.36335	Н	8.649946	-5.30685	-1.15029
С	2.696516	2.68496	-0.58677	Н	9.62806	-1.13431	-1.12263
С	3.540581	1.609658	-0.61171	Н	11.14043	-1.47424	-3.04164
С	4.688529	1.545215	0.223235	Н	11.43872	-3.74034	-4.01403
С	4.946454	2.616841	1.045789	Н	10.18814	-5.65647	-3.04758
С	-2.49149	3.394568	-1.11534	Н	-9.98692	-2.82023	-3.45101
С	-2.46419	2.311319	-0.2687	Н	-6.03585	-4.42513	-3.65719
С	-1.32886	2.146522	0.569127	Н	-9.47495	0.087679	3.656733
С	-0.27519	3.016344	0.522367	Н	-8.54311	-4.07894	3.619673
С	5.582231	0.36332	0.188946	С	8.15522	-3.93637	1.156626
С	6.206189	-0.1073	1.348643	С	6.949119	-4.36817	1.715215
С	7.058085	-1.20008	1.319646	С	9.356876	-4.44053	1.661258
С	7.301554	-1.88029	0.122609	С	6.949738	-5.27737	2.764947

С	6.672795	-1.42548	-1.04035	Н	6.01296	-3.98661	1.323207
С	5.837068	-0.32029	-1.00417	С	9.347979	-5.36406	2.698403
С	-3.98297	0.771791	1.001438	Н	10.29603	-4.10557	1.235335
С	-5.05017	-0.11194	1.051844	С	8.146808	-5.78457	3.260089
С	-5.75943	-0.48321	-0.10132	Н	6.004511	-5.6014	3.18849
С	-5.34471	0.094344	-1.31202	Н	10.28995	-5.74676	3.077987
С	-4.29408	0.996837	-1.36922	Н	8.143519	-6.50043	4.075006
С	-3.59083	1.349698	-0.21149	В	-6.953	-1.49306	-0.03956
Ν	8.161116	-3.00197	0.089354	С	-8.27774	0.816516	1.418967
С	9.036139	-3.19753	-1.00975	Н	-7.38479	1.352465	1.754611
С	-7.35263	-2.28395	-1.34993	Н	-8.2649	0.835357	0.32835
С	-7.71732	-1.6861	1.331814	Н	-9.14791	1.387132	1.75233
С	9.202384	-4.47007	-1.56285	С	-7.1874	-4.18766	1.343351
С	9.746741	-2.12299	-1.55164	Н	-7.50587	-4.34342	0.310946
С	10.59705	-2.31961	-2.63185	Н	-6.0948	-4.11726	1.336741
С	10.76797	-3.58882	-3.17518	Н	-7.45012	-5.0779	1.918611
С	10.06945	-4.66152	-2.63063	С	-9.78838	-2.18597	5.121605
С	-8.65805	-2.20692	-1.88792	Н	-10.2991	-3.15063	5.177716
С	-8.9786	-2.90065	-3.05233	Н	-9.07698	-2.14772	5.953707
С	-8.0512	-3.70166	-3.71218	Н	-10.5262	-1.3974	5.286291
С	-6.77348	-3.79019	-3.17213	С	-9.73373	-1.35599	-1.25511
С	-6.40765	-3.08963	-2.02323	Н	-9.88663	-1.61006	-0.20449
С	-8.99795	-0.76965	3.187701	Н	-9.48156	-0.29148	-1.29578
С	-9.08467	-2.0133	3.801908	Н	-10.6841	-1.4832	-1.77768
С	-8.48421	-3.09421	3.162468	С	-4.98418	-3.25359	-1.53674
С	-7.81869	-2.95537	1.947114	Н	-4.33532	-2.47063	-1.94046
С	-8.31772	-0.58669	1.983982	Н	-4.89859	-3.20449	-0.45026
Н	2.714844	8.442911	-0.18843	Н	-4.57881	-4.21539	-1.85995
Н	0.932858	8.639635	0.008172	С	-8.41663	-4.43215	-4.97687
Н	5.317716	4.831044	2.513075	Н	-8.27633	-3.79172	-5.85446
Н	3.888978	6.86862	2.466921	Н	-7.79532	-5.31956	-5.11856
Н	-0.55958	7.296505	-2.6162	Н	-9.4639	-4.7444	-4.9685
Н	-2.38944	5.608773	-2.62461				

Table S20. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of m-**BTT** in the ground state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-7.35838	-2.92396	-0.28558	Н	-0.04232	-1.30759	0.297542
С	-4.59984	-1.97252	0.546896	С	2.838359	-2.86919	-0.58951

С	-5.42601	-2.95519	1.051792	Н	3.160416	-3.84003	-2.48215
0	-6.25053	-3.65129	0.191746	Н	2.190085	-1.81876	1.172633
0	-7.01716	-1.62592	-0.71313	Ν	4.125959	-3.16149	-0.08599
С	-5.88665	-1.5544	-1.50139	Ν	0.808315	5.137364	0.285017
С	-4.64724	-1.71636	-0.91822	С	5.256636	-3.09967	-0.94043
С	-3.80054	-1.22286	1.471614	С	5.406535	-2.04432	-1.84449
С	-3.79664	-1.59698	2.845343	С	6.238749	-4.09247	-0.88635
С	-4.6137	-2.66595	3.287735	С	6.512094	-1.99265	-2.68384
С	-5.43385	-3.32026	2.411891	Н	4.651854	-1.26632	-1.88606
С	-6.0537	-1.26989	-2.87052	С	7.351018	-4.02354	-1.71562
С	-4.95356	-1.17526	-3.67604	Н	6.125588	-4.91706	-0.1908
С	-3.65758	-1.4055	-3.15288	С	7.49303	-2.97764	-2.62227
С	-3.49329	-1.69664	-1.76893	Н	6.612402	-1.16669	-3.38139
С	-3.03342	-0.09502	1.082421	Н	8.10517	-4.80263	-1.66006
С	-2.26392	0.613838	1.978621	Н	8.359377	-2.93051	-3.27404
С	-2.24115	0.1986	3.337802	С	4.295044	-3.5168	1.276883
С	-2.98821	-0.86641	3.753186	С	3.407535	-4.40196	1.895222
С	-2.51196	-1.37654	-3.98853	С	5.355255	-2.98886	2.018811
С	-1.26746	-1.64485	-3.49397	С	3.574206	-4.74128	3.231822
С	-1.08785	-1.97497	-2.12346	Н	2.58687	-4.82127	1.323248
С	-2.19058	-2.00175	-1.29893	С	5.52621	-3.34796	3.349748
Н	-8.10886	-2.77749	0.496766	Н	6.044219	-2.297	1.546416
Н	-7.75917	-3.52416	-1.10765	C	4.63564	-4.2214	3.966218
Н	-4.59675	-2.94116	4.337986	Н	2.874906	-5.42928	3.697034
Н	-6.08908	-4.12367	2.730114	Н	6.355887	-2.92951	3.911314
Н	-7.05848	-1.12562	-3.2522	Н	4.767526	-4.49436	5.008181
Н	-5.06143	-0.94718	-4.73221	C	0.169441	6.372113	0.003133
Н	-3.04753	0.208838	0.043234	С	-0.83322	6.861343	0.84506
Н	-2.98861	-1.15983	4.799079	С	0.537974	7.118594	-1.11944
Н	-2.64305	-1.13369	-5.03917	С	-1.45969	8.068039	0.560612
Н	-2.06714	-2.29095	-0.26273	Н	-1.119	6.290724	1.722147
Н	-1.6511	0.758221	4.05599	С	-0.07995	8.333642	-1.38654
Н	-0.40268	-1.59516	-4.14742	Н	1.311342	6.741643	-1.77998
С	-1.47379	1.791183	1.543941	С	-1.08494	8.813963	-0.55265
С	-0.21288	2.055976	2.088232	Н	-2.23759	8.432956	1.22432
С	-1.95651	2.67468	0.573129	Н	0.219213	8.901513	-2.26224
С	0.533429	3.152765	1.685764	Н	-1.57104	9.759961	-0.76799
Н	0.201326	1.388156	2.837195	C	2.215461	5.026788	0.143794
С	-1.21066	3.764446	0.151796	С	2.782535	3.898092	-0.45464
Н	-2.93885	2.512338	0.140989	С	3.053999	6.048237	0.598471

С	0.047198	4.022905	0.705312	С	4.1615	3.792166	-0.58378
Н	1.506177	3.334874	2.128887	Н	2.13738	3.104751	-0.81647
Н	-1.60824	4.428374	-0.60775	С	4.430947	5.943427	0.448148
С	0.262973	-2.28213	-1.59768	Н	2.620498	6.924199	1.068866
С	1.201244	-2.97865	-2.3662	С	4.994048	4.814333	-0.13847
С	0.647529	-1.88207	-0.31332	Н	4.585577	2.907801	-1.04948
С	2.461543	-3.27812	-1.8725	Н	5.067815	6.746743	0.805801
Н	0.931837	-3.32677	-3.3586	Н	6.070551	4.731879	-0.24766
С	1.911424	-2.16107	0.182146				

Table S21. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of m-**BTB** in the ground state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	8.516884	-1.03291	-0.29316	Н	-2.82228	2.866906	-1.91097
С	5.685136	-0.33261	0.558856	С	-4.41234	6.382642	-2.05454
С	6.917932	0.119545	0.984158	Н	-2.86847	6.973721	-0.68019
0	7.956878	0.204142	0.08055	С	-4.95624	5.351393	-2.81403
0	7.539524	-2.0009	-0.59259	Н	-4.78556	3.272925	-3.3463
С	6.513675	-1.55532	-1.40114	Н	-4.85161	7.374957	-2.08959
С	5.549163	-0.72169	-0.87246	Н	-5.82447	5.529326	-3.44011
С	4.640645	-0.45085	1.534919	С	-1.51947	5.225506	0.924889
С	4.876343	0.002967	2.864034	С	-0.31912	5.75866	1.403092
С	6.148702	0.512461	3.220223	С	-2.65038	5.254416	1.745562
С	7.159991	0.551781	2.302395	С	-0.25267	6.300682	2.680132
С	6.477676	-2.02017	-2.7298	Н	0.560395	5.745	0.768322
С	5.462783	-1.62197	-3.55336	С	-2.58038	5.815577	3.014431
С	4.475454	-0.71827	-3.09105	Н	-3.58332	4.835641	1.384243
С	4.520082	-0.24165	-1.74976	С	-1.38228	6.337665	3.491903
С	3.373973	-1.01671	1.23932	Н	0.687988	6.709541	3.036261
С	2.361217	-1.07086	2.170864	Н	-3.46859	5.831018	3.638672
С	2.604107	-0.58144	3.482053	Н	-1.32939	6.768932	4.486285
С	3.827926	-0.07631	3.816172	С	-3.18202	-4.43079	0.054039
С	3.440653	-0.2646	-3.94812	С	-2.87143	-5.50425	0.918025
С	2.496493	0.620299	-3.51222	С	-3.68237	-4.73992	-1.23199
С	2.540125	1.130969	-2.18695	С	-3.07071	-6.82029	0.502008
С	3.550617	0.713241	-1.34923	С	-3.84092	-6.06756	-1.6218
Н	9.109173	-1.46677	0.517866	С	-3.54282	-7.12671	-0.7691
Н	9.142906	-0.81123	-1.16247	Н	-2.84928	-7.62966	1.194278
Н	6.312436	0.854831	4.237513	Н	-4.2178	-6.28139	-2.61944

Н	8.149124	0.918279	2.554058	С	-4.13111	-1.86165	0.482707
Н	7.258137	-2.69441	-3.06486	С	-3.98653	-0.65614	-0.23544
Н	5.410761	-1.97862	-4.57764	С	-5.33949	-2.06958	1.190802
Н	3.188468	-1.38633	0.23897	С	-5.017	0.286263	-0.2422
Н	4.01978	0.271199	4.827196	С	-6.33438	-1.0975	1.179179
Н	3.406004	-0.64627	-4.96453	С	-6.19633	0.090759	0.463456
Н	3.615605	1.132883	-0.35335	Н	-4.88812	1.202409	-0.81513
Н	1.817493	-0.63927	4.227067	Н	-7.24841	-1.27314	1.742283
Н	1.693915	0.925853	-4.17524	В	-2.96881	-2.93325	0.51131
С	1.022444	-1.58935	1.798868	С	-2.75016	-0.32287	-1.04361
С	-0.13459	-0.9521	2.261964	Н	-2.05489	0.301229	-0.47107
С	0.876842	-2.69182	0.949609	Н	-2.19335	-1.20597	-1.36044
С	-1.38893	-1.37928	1.853679	Н	-3.02465	0.236315	-1.94348
Н	-0.04684	-0.08879	2.91471	С	-5.57953	-3.3191	2.006407
С	-0.38355	-3.13191	0.573585	Н	-5.48986	-4.22363	1.399796
Н	1.759808	-3.21629	0.597431	Н	-4.86136	-3.41114	2.828605
С	-1.55248	-2.47999	0.998418	Н	-6.57885	-3.3054	2.449172
Н	-2.26733	-0.84188	2.1989	С	-7.30025	1.115424	0.447219
Н	-0.46805	-3.99879	-0.0756	Н	-7.61946	1.372413	1.462511
С	1.494858	2.06977	-1.71487	Н	-6.98242	2.03508	-0.05101
С	0.927432	3.022731	-2.5674	Н	-8.18352	0.737913	-0.08017
С	1.017504	2.009352	-0.40097	С	-4.0387	-3.66374	-2.23182
С	-0.06853	3.881833	-2.12877	Н	-4.83556	-3.01448	-1.86015
Н	1.289466	3.117204	-3.58645	Н	-3.18331	-3.02036	-2.46264
С	0.011393	2.854096	0.041723	Н	-4.3752	-4.10802	-3.17217
Н	1.409554	1.258629	0.277823	С	-2.33994	-5.29374	2.319634
С	-0.54804	3.803349	-0.81828	Н	-1.2521	-5.17042	2.318672
Н	-0.4805	4.623487	-2.80454	Н	-2.75733	-4.40771	2.803009
Н	-0.35738	2.769099	1.058165	Н	-2.57235	-6.15695	2.949547
N	-1.58211	4.661609	-0.37497	С	-3.71081	-8.55496	-1.21661
С	-2.71294	4.892482	-1.19654	Н	-4.56266	-8.66368	-1.89421
С	-3.26555	3.855764	-1.95517	Н	-2.8223	-8.90602	-1.75452
С	-3.29521	6.161919	-1.25916	Н	-3.86234	-9.22471	-0.36561
С	-4.37195	4.089625	-2.76229				

Figure S46. The theoretically calculated ECD spectra of (a) (*S*)-*m*-**BTT** and (b) (*S*)-*m*-**BTB** (CAM-B3LYP/6-31G*).

Table S22. Summary of the theoretical ECD of (*S*)-m-BTT and (*S*)-m-BTB about selected transitions and oscillator and rotatory strengths in CH₂Cl₂ (CAM-B3LYP/6-31G*).

Compound	Transition	λ, nm (eV)	Oscillator Strength,	<i>R</i> , (10 ⁻⁴⁰	Orbital Contributions
			f	cgs)	
					HOMO→LUMO (42%)
	$S_0 \rightarrow S_1$	3.78(328)	0.3943	1342.86	HOMO-1 \rightarrow LUMO+1 (20%)
					HOMO-2→LUMO (20%)
	$S_0 \rightarrow S_2$	3.97(312)	1 2197	_	HOMO-1→LUMO (36%)
	-0 -2			1720.70	HOMO→LUMO+1 (34%)
	S. S.	4 21(295)	0 5307	202 50	HOMO-2→LUMO (54%)
	S0→S3	4.21(293)	0.3307	292.39	HOMO-1→LUMO+1 (18%)
					HOMO-4→LUMO (22%)
	$S_0 \rightarrow S_4$	4.30(288)	0.0240	-13.24	HOMO→LUMO+3 (12%)
					HOMO-2→LUMO+1 (10%)
			0.1006		HOMO-2→LUMO+2 (17%)
(<i>S</i>)- <i>m</i> -BTT	$S_0 \rightarrow S_5$	4.35(285)		-1.22	HOMO-5→LUMO (14%)
					HOMO-1→LUMO+3 (11%)
	G . G	4 42(270 4)	0.0122	44.02	HOMO-1→LUMO (40%)
	$S_0 \rightarrow S_6$	4.43(279.4)	0.0155	44.95	HOMO-1→LUMO+5 (40%)
	S. \S-	1 11(270 2)	0.0365	345.02	HOMO→LUMO (40%)
	$\mathbf{S}_0 \rightarrow \mathbf{S}_7$	4.44(279.2)	0.0305	545.02	HOMO-1→LUMO+5 (40%)
	c ,c	1 52(274)	0 1217	212.02	HOMO-3→LUMO (36%)
	$S_0 \rightarrow S_8$	4.32(274)	0.1217	-213.03	HOMO-2→LUMO+1 (17%)
					HOMO→LUMO+6 (41%)
	$S_0 \rightarrow S_9$	4.53(273.5)	0.2823	-562.20	HOMO-1→LUMO+6 (28%)
					HOMO-1→LUMO+7 (13%)
	$S_0 \rightarrow S_{10}$	4.54(273.3)	0.3734	410.60	HOMO-1→LUMO+7 (37%)

					HOMO→LUMO+7 (33%)
					HOMO-1→LUMO+6 (11%)
					HOMO-2→LUMO+1 (28%)
	$S_0 \rightarrow S_{11}$	4.55(272)	0.0036	-3.89	HOMO→LUMO+1 (27%)
					HOMO-1→LUMO (24%)
	S ₀ →S ₁₂	4 74(262)	0.0493	67 19	HOMO-1→LUMO+1 (31%)
	50 512		0.0195	07.119	HOMO→LUMO+10 (28%)
	$S_0 \rightarrow S_{12}$	4 91(252 3)	0 0274	-37 34	HOMO-1→LUMO+10 (31%)
	50 / 513	1.91(202.5)	0.0271	57.51	HOMO→LUMO+10 (28%)
	S ₀ →S ₁₄	4 92(252 1)	0.0335	-32.12	HOMO→LUMO+11 (35%)
	50 514	1.92(202.11)	0.0555	52.12	HOMO-1→LUMO+11 (23%)
					HOMO-3→LUMO+1 (25%)
	$S_0 \rightarrow S_{15}$	5.00(248)	0.0020	3.82	HOMO→LUMO (13%)
					HOMO-2→LUMO (11%)
					HOMO→LUMO+1 (35%)
	$S_0 \rightarrow S_1$	3.89(319)	0.2830	833.59	HOMO-1→LUMO (19%)
					HOMO-1→LUMO+1 (12%)
	$S_0 \rightarrow S_2$	4.09(303)	0.2739	-195.61	HOMO-3→LUMO (56%)
					HOMO-3→LUMO (19%)
	$S_0 \rightarrow S_2$	4.10(302)	1.0038	-	HOMO-1→LUMO (18%)
	20 23		110000	1093.62	HOMO→LUMO+1 (14%)
					HOMO-2→LUMO (10%)
		4.24(293)		225.90	HOMO→LUMO (27%)
	$S_0 \rightarrow S_4$		0.2850		HOMO-4→LUMO (21%)
	50 54				HOMO-1→LUMO+1 (15%)
					HOMO-2→LUMO (13%)
	$S_0 \rightarrow S_5$	4.32(287)	0.0814	34.62	HOMO \rightarrow LUMO (56%)
(<i>S</i>)- <i>m-</i> BTB					HOMO-1→LUMO+1 (14%)
(3) 212	$S_0 \rightarrow S_6$	4.37(284)	0.0022	-0.54	HOMO-4 \rightarrow LUMO (15%)
					HOMO-6→LUMO+1 (10%)
	$S_0 \rightarrow S_7$	4.44(279)	0.0773	-114.06	HOMO \rightarrow LUMO+5 (16%)
					HOMO \rightarrow LUMO+3 (16%)
	$S_0 \rightarrow S_8$	4.47(277)	0.0431	242.32	HOMO→LUMO+5 (66%)
	$S_0 \rightarrow S_9$	4.52(274)	0.0774	14.75	HOMO-5→LUMO (23%)
					HOMO-1→LUMO+1 (11%)
	$S_0 \rightarrow S_{10}$	4.56(272)	0.3809	-30.30	HOMO→LUMO+6 (88%)
	$S_0 \rightarrow S_{11}$	4.59(270)	0.0446	-188.88	HOMO-5→LUMO (37%)
					HOMO-1→LUMO+2 (10%)
	$S_0 \rightarrow S_{12}$	4.65(267)	0.0308	87.93	HOMO-7→LUMO (67%)
					HOMO-8→LUMO (23%)
	$S_0 \rightarrow S_{13}$	4.75(261)	0.3260	-43.74	HOMO-1→LUMO+2 (22%)
					HOMO-2→LUMO (11%)

				HOMO62→LUMO (10%)
				HOMO-2→LUMO+1 (22%)
$S_0 \rightarrow S_{14}$	4.76(260)	0.0696	-46.06	HOMO-1→LUMO+1 (17%)
				HOMO-2→LUMO (12%)
$S_0 \rightarrow S_{15}$	4.80(258)	0.0162	-7.06	HOMO-11→LUMO (67%)

Figure S47. HPLC chromatogram of (a) *rac-p*-BTT and (*R*)-*p*-BTT and (b) *rac-p*-BTB and (*R*)-*p*-BTB by analytical HPLC equipped with a Daicel Chiralpak IF column with *n*-hexane/isopropanol = 90:10, flow = 0.8 mL/min. (The compounds of (*R*)-*p*-BTT and (*R*)-*p*-BTB were synthesized as described for *rac-p*-BTT and *rac-p*-BTB, respectively, using (*R*)-1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol ((*R*)-BINOL) as starting material).

Figure S48. The optimized structures (CAM-B3LYP/6-31G*) in the S₁ excited state. Hydrogen atoms are omitted. The angles between the adjacent aryl rings are shown for comparison.

Figure S49. Molecular orbitals contributing to the DFT calculated transitions in the S₁ excited state of *p*-BTT, *m*-BTT, *p*-BTB and *m*-BTB in CH₂Cl₂(iso = 0.02, CAM-B3LYP/6-31G*).

Table S23. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of MeBTT in the S_1 excited state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-0.57283	3.967221	-0.7608	С	8.809005	-2.01438	-2.23231
С	-0.54437	4.812936	-1.85593	Н	-3.38601	3.857539	-3.458
0	0.508412	5.669833	-1.93238	Н	-1.53335	5.435045	-3.68816
0	-0.63859	5.818214	1.238774	Н	1.397355	5.846293	3.026488
С	0.447326	5.006335	1.270653	Н	3.300099	4.310202	2.972262
С	0.518277	4.034889	0.25458	Н	-0.98204	2.172934	1.242319
С	-1.65218	3.051441	-0.61961	Н	-2.84313	0.609841	1.440488
С	-2.67921	3.004248	-1.60306	Н	-4.53209	2.093526	-2.21282
С	-2.60405	3.887092	-2.70462	Н	4.467001	2.445899	1.951586
С	-1.5665	4.770531	-2.83418	Н	2.852897	0.555987	-1.60749
С	1.455774	5.097865	2.245754	Н	0.990422	2.067965	-1.56568
С	2.525028	4.234902	2.214863	Н	-5.11747	-0.15991	-2.34139
С	2.645961	3.232614	1.207749	Н	-7.0098	-1.70191	-2.10806
С	1.605328	3.155283	0.216877	Н	-6.95139	-1.12973	2.139671
С	-1.75734	2.161011	0.484402	Н	-5.1007	0.458273	1.901604
С	-2.8053	1.290808	0.595961	Н	4.233483	-0.84521	-1.47943
С	-3.8358	1.23384	-0.38409	Н	6.102513	-2.36016	-1.49543
С	-3.75149	2.089563	-1.45703	Н	7.927173	-0.18416	1.755764
С	3.722369	2.350286	1.170276	Н	6.078066	1.360618	1.777054
С	3.855085	1.331131	0.172021	Н	-9.3679	-4.18422	1.802745
С	2.804801	1.286802	-0.80863	Н	-9.35956	-0.07201	0.591568
С	1.749796	2.14112	-0.79515	Н	-11.1646	0.408217	2.202897
С	-4.96101	0.279651	-0.24031	Н	-12.1045	-1.41184	3.609942
С	-5.52427	-0.35276	-1.35368	Н	-11.1968	-3.71479	3.390393

С	-6.58921	-1.23128	-1.22612	Н	10.86007	-2.51554	0.542966
C	-7.11853	-1.52843	0.032939	Н	11.95075	-3.15479	2.663979
C	-6.55508	-0.91236	1.153831	Н	10.58041	-3.64239	4.677249
C	-5.50285	-0.0201	1.01401	Н	8.104131	-3.49915	4.539274
C	5.040718	-0.66695	-0.7797	Н	7.012474	-2.8788	2.410982
C	6.094467	-1.53302	-0.79459	Н	9.33563	-1.91076	-4.30394
С	7.171174	-1.39534	0.130412	Н	9.975402	-4.30642	-4.45107
С	7.108473	-0.32602	1.058629	Н	9.805125	-5.74685	-2.43427
С	6.052529	0.542177	1.069435	Н	8.988219	-4.80894	-0.30236
С	4.949591	0.42803	0.147986	Н	8.541997	-0.96588	-2.16313
N	-8.19801	-2.43359	0.1696	С	-8.23673	-3.6155	-0.61241
N	8.237581	-2.28684	0.125317	С	-7.07781	-4.37045	-0.81514
С	-9.24139	-2.1601	1.089642	С	-9.43505	-4.0436	-1.19106
С	8.865568	-2.65919	1.340748	С	-7.11862	-5.52321	-1.58899
С	8.714312	-2.82571	-1.0953	Н	-6.14563	-4.04856	-0.36361
С	-9.76868	-3.17989	1.887153	С	-9.47141	-5.20794	-1.94762
С	-9.75883	-0.86723	1.211781	Н	-10.3371	-3.4596	-1.04355
С	-10.7754	-0.60205	2.120406	С	-8.31457	-5.95252	-2.15601
С	-11.3052	-1.62074	2.906349	Н	-6.20863	-6.09671	-1.73691
С	-10.7983	-2.91035	2.779687	Н	-10.4111	-5.52638	-2.38861
С	10.26091	-2.74082	1.418125	Н	-8.34474	-6.85768	-2.75381
С	10.86802	-3.09803	2.613107	С	0.590178	6.558174	-3.03173
С	10.10049	-3.36777	3.7437	Н	0.660786	6.018435	-3.98252
С	8.712477	-3.28174	3.667064	Н	-0.26677	7.23999	-3.06423
С	8.093458	-2.9319	2.475942	Н	1.501803	7.13622	-2.88044
С	9.258864	-2.5505	-3.43045	С	-0.77144	6.817399	2.232673
С	9.622971	-3.89177	-3.5124	Н	-1.7027	7.338601	2.011406
С	9.530805	-4.6981	-2.37963	Н	-0.83057	6.3791	3.23515
С	9.075517	-4.17611	-1.17846	Н	0.060473	7.52951	2.197206

Table S24. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of MeBTB in the S_1 excited state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	1.818002	3.694632	0.958232	Н	-0.01567	2.040582	1.725612
С	1.70859	4.405212	2.140203	Н	6.362413	-0.51922	2.302023
0	0.63824	5.234422	2.250507	Н	8.296181	-1.99276	1.993114
0	2.210326	5.437079	-1.09235	Н	8.421601	-0.95549	-2.16469

С	1.035292	4.793617	-1.1503	Н	6.528186	0.564003	-1.84389
С	0.788448	3.874618	-0.10447	Н	-3.81276	-0.09134	1.788548
С	2.917281	2.812254	0.769188	Н	-5.88116	-1.31098	1.748167
С	3.889834	2.665776	1.795954	Н	-6.95004	0.547435	-1.9841
С	3.736615	3.412868	2.987269	Н	-4.89516	1.789818	-1.97719
С	2.676479	4.260008	3.163305	Н	10.8587	-4.00244	-2.05334
С	0.08744	4.99997	-2.17521	Н	10.73985	-0.03738	-0.42866
С	-1.09076	4.304591	-2.16217	Н	12.58892	0.631031	-1.91911
С	-1.38827	3.363233	-1.12874	Н	13.60545	-1.0216	-3.47175
С	-0.41165	3.165578	-0.09239	Н	12.73106	-3.34711	-3.52077
С	3.092337	2.051599	-0.4185	Н	-11.8524	-0.74923	-2.80843
С	4.160894	1.212818	-0.57035	Н	-8.45085	-2.46159	-4.73802
С	5.142435	1.061935	0.448641	Н	-9.32402	-1.26924	4.418599
С	4.985898	1.788923	1.605562	Н	-9.36742	-5.04487	2.426293
С	-2.57836	2.654606	-1.11569	С	9.650502	-3.69665	0.376055
С	-2.90417	1.704428	-0.09137	С	8.509328	-4.49985	0.456039
С	-1.90896	1.529351	0.933475	С	10.83828	-4.14452	0.961024
С	-0.73769	2.212138	0.935525	С	8.556519	-5.72031	1.117623
С	6.293105	0.147616	0.256501	Н	7.585977	-4.16217	-0.00212
С	6.818125	-0.59437	1.319696	С	10.88214	-5.37485	1.604314
С	7.906903	-1.43527	1.148331	Н	11.72612	-3.52374	0.907756
С	8.501188	-1.58228	-0.10861	С	9.742389	-6.16823	1.691456
С	7.975986	-0.85554	-1.18111	Н	7.66045	-6.33104	1.171403
С	6.898909	-0.00249	-0.99532	Н	11.8134	-5.70794	2.052243
С	-4.48434	0.062353	0.952531	Н	9.777938	-7.12563	2.201057
С	-5.66298	-0.62793	0.93226	В	-7.94096	-1.29554	-0.14347
С	-6.62166	-0.50633	-0.12324	С	-8.449	0.248238	2.445177
С	-6.25871	0.405158	-1.15836	Н	-7.39702	0.481045	2.643136
С	-5.0902	1.115857	-1.15224	Н	-8.71086	0.754958	1.514015
С	-4.12553	0.980047	-0.09338	Н	-9.03995	0.691372	3.252352
Ν	9.605951	-2.44617	-0.29145	С	-8.51502	-4.27494	0.041712
С	10.6741	-2.06411	-1.14261	Н	-9.11467	-3.9624	-0.81659
С	-8.76299	-1.4101	-1.49946	Н	-7.46877	-4.26577	-0.28195
С	-8.46152	-1.9885	1.18898	Н	-8.77553	-5.30992	0.280044
С	11.24481	-2.98935	-2.0211	С	-9.862	-3.90508	4.845902
С	11.17296	-0.75872	-1.11321	Н	-10.5929	-4.6922	4.636621
С	12.21432	-0.38745	-1.95412	Н	-9.02696	-4.37516	5.379142
С	12.78696	-1.31268	-2.82142	Н	-10.3218	-3.18572	5.529336
С	12.2986	-2.61537	-2.84522	С	-10.8347	-0.39804	-0.39042
С	-10.1155	-0.99286	-1.5787	Н	-10.8566	-1.08495	0.459011

С	-10.8186	-1.08737	-2.77668	Н	-10.3471	0.519618	-0.04432
С	-10.2407	-1.60543	-3.93323	Н	-11.8662	-0.14363	-0.6492
С	-8.92083	-2.03295	-3.85506	С	-6.75339	-2.439	-2.72041
С	-8.1798	-1.93744	-2.67623	Н	-6.04894	-1.62548	-2.92557
С	-9.14536	-1.87137	3.529974	Н	-6.44183	-2.89107	-1.77672
С	-9.39312	-3.23794	3.579481	Н	-6.63176	-3.18407	-3.51248
С	-9.1781	-3.97338	2.416467	С	-11.0165	-1.68438	-5.22186
С	-8.73231	-3.37901	1.238868	Н	-11.0314	-0.71582	-5.73593
С	-8.68079	-1.24449	2.373001	Н	-10.5758	-2.41196	-5.90916
Н	4.477708	3.305708	3.774005	Н	-12.0581	-1.96965	-5.04501
Н	2.584072	4.818776	4.08575	С	0.466682	5.978645	3.444539
Н	0.285937	5.706779	-2.97046	Н	-0.44691	6.556286	3.305673
Н	-1.82139	4.463491	-2.94939	Н	0.34949	5.32247	4.313542
Н	2.354877	2.131268	-1.20987	Н	1.304035	6.663723	3.61494
Н	4.25241	0.628837	-1.48067	С	2.548317	6.370527	-2.11071
Н	5.725628	1.717261	2.397938	Н	2.589061	5.884911	-3.09044
Н	-3.27974	2.844421	-1.91827	Н	1.833917	7.198882	-2.137
Н	-2.08742	0.822115	1.732958	Н	3.535541	6.747614	-1.84837

Table S25. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of *p*-**BTT** in the S₁ excited state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	0.033614	7.713095	0.417987	С	10.02149	-2.68391	-3.57533
С	-0.6501	4.790617	-0.08943	С	9.436973	-3.84997	-3.09087
С	-0.95255	5.958327	-0.79735	С	8.578991	-3.80859	-1.99923
0	-0.0454	6.999154	-0.79307	С	8.903303	-1.42612	-1.84397
0	0.099565	6.873648	1.548284	Н	-0.85508	8.33144	0.576311
С	0.981003	5.817397	1.435501	Н	0.932014	8.331279	0.327294
С	0.652407	4.747306	0.629166	Н	-3.94758	5.153467	-2.16081
С	-1.61031	3.75892	-0.04834	Н	-2.29445	7.010714	-2.09653
С	-2.82375	3.873306	-0.81425	Н	2.34334	6.722346	2.830311
С	-3.03658	5.063838	-1.57639	Н	3.965526	4.836717	2.711241
С	-2.12838	6.090074	-1.54646	Н	-0.61096	2.494672	1.415347
С	2.166215	5.861384	2.194846	Н	-2.2518	0.756951	1.437666
С	3.052553	4.823504	2.123481	Н	-4.65045	2.982726	-1.40933
С	2.809229	3.727947	1.256749	Н	4.663468	2.739974	1.720155
С	1.613433	3.695909	0.484293	Н	2.233841	0.829026	-1.25208
С	-1.47697	2.585019	0.770765	Н	0.571886	2.594199	-1.06066
С	-2.41265	1.601328	0.777822	Н	-6.04839	1.627975	-1.27223

С	-3.60513	1.657062	-0.02388	Н	-7.67094	-0.15285	-1.2831
С	-3.76697	2.84758	-0.79674	Н	-5.07464	-2.56316	1.190292
С	3.756144	2.682358	1.125603	Н	-3.42927	-0.80699	1.1969
С	3.573105	1.638576	0.248859	Н	4.341175	0.312178	-2.00645
С	2.396944	1.639561	-0.54901	Н	5.978819	-1.49717	-2.20892
С	1.45609	2.625412	-0.43588	Н	6.74531	-1.27769	2.003626
С	-4.56228	0.608637	-0.02678	Н	5.062909	0.492192	2.216743
С	-5.80898	0.714106	-0.74451	Н	-7.81717	-5.16176	-0.02417
С	-6.73518	-0.28883	-0.75234	Н	-7.49429	-1.6802	2.469747
С	-6.51284	-1.49935	-0.04336	Н	-7.77893	-3.09308	4.477462
С	-5.28503	-1.63402	0.673136	Н	-8.09971	-5.54451	4.243188
С	-4.36073	-0.63263	0.672948	Н	-8.12612	-6.56884	1.980708
С	4.85317	-0.0374	-1.11541	Н	9.692322	-3.53251	0.795744
С	5.784888	-1.05688	-1.23708	Н	9.87261	-5.28215	2.526471
С	6.485415	-1.51777	-0.11836	Н	7.823194	-6.28573	3.510184
С	6.215527	-0.93283	1.122526	Н	5.593023	-5.52405	2.721931
С	5.26886	0.073384	1.236721	Н	5.417385	-3.79924	0.966469
С	4.571193	0.550131	0.122176	Н	10.19881	-0.5556	-3.31011
Ν	-7.44891	-2.52187	-0.05242	Н	10.68554	-2.71838	-4.4329
Ν	7.442281	-2.55192	-0.23855	Н	9.638103	-4.8015	-3.57355
С	-7.63708	-3.33049	1.0956	Н	8.115175	-4.7184	-1.63371
С	7.543086	-3.54899	0.765135	Н	8.702816	-0.48169	-1.34965
С	8.307419	-2.59485	-1.36159	С	-8.23362	-2.76496	-1.2079
С	-7.82027	-4.71271	0.962614	С	-7.64601	-2.71546	-2.47752
С	-7.61978	-2.75245	2.37092	С	-9.60145	-3.03773	-1.08574
С	-7.78482	-3.55076	3.49342	С	-8.42052	-2.9392	-3.60614
С	-7.97061	-4.92436	3.362377	Н	-6.58385	-2.51735	-2.56692
С	-7.98948	-5.498	2.092209	С	-10.3637	-3.26386	-2.22181
С	8.795603	-3.97604	1.214876	Н	-10.0584	-3.05963	-0.10279
С	8.891674	-4.96119	2.189416	С	-9.78059	-3.21424	-3.48617
С	7.744996	-5.5216	2.743651	Н	-7.95507	-2.90849	-4.58604
С	6.496874	-5.09147	2.303892	Н	-11.4244	-3.46955	-2.11926
С	6.392637	-4.12054	1.316037	Н	-10.3825	-3.38843	-4.37186
С	9.745155	-1.47308	-2.94783				

Table S. 26. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of *p*-**BTB** in the S_1 excited state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	1.753388	7.95251	-0.47861	Н	3.277283	0.788101	-1.45157

С	2.101639	4.975461	0.048337	Н	5.864829	2.749315	1.424618
С	2.52009	6.105859	0.757433	Н	-3.38414	3.519579	-1.82128
0	1.733253	7.240287	0.735451	Н	-1.21946	1.366681	1.191055
0	1.607789	7.119983	-1.60722	Н	0.634074	2.931464	1.008434
С	0.613865	6.1688	-1.5021	Н	7.093302	1.239641	1.336988
С	0.812112	5.072593	-0.68811	Н	8.519364	-0.70152	1.364255
С	2.943813	3.844818	0.023162	Н	5.74836	-2.80057	-1.20151
С	4.151633	3.829048	0.806091	Н	4.296971	-0.88153	-1.22605
С	4.481891	4.991796	1.569469	Н	-3.3747	1.114138	1.925443
С	3.691922	6.111019	1.524006	Н	-5.24355	-0.4577	2.125243
С	-0.54976	6.340876	-2.27665	Н	-5.87518	-0.2546	-2.10925
С	-1.54731	5.40911	-2.21227	Н	-4.02198	1.338927	-2.31096
С	-1.43734	4.297937	-1.33835	Н	8.169897	-5.68532	0.038637
С	-0.26155	4.135426	-0.55165	Н	8.283438	-2.15842	-2.40957
С	2.6953	2.690095	-0.79617	Н	8.470686	-3.56851	-4.43069
С	3.520523	1.611943	-0.79107	Н	8.524187	-6.04285	-4.22549
С	4.701324	1.540393	0.026545	Н	8.381956	-7.09213	-1.97884
С	4.978829	2.707502	0.802358	Н	-10.0133	-2.9631	-3.13112
С	-2.4961	3.365091	-1.2154	Н	-6.0598	-4.55764	-3.37852
С	-2.44054	2.314035	-0.33022	Н	-9.33866	0.199046	3.855441
С	-1.28181	2.185916	0.482184	Н	-8.39475	-3.96477	3.936606
С	-0.23446	3.058305	0.373991	С	8.804399	-3.35972	1.269105
С	5.541222	0.39583	0.041453	С	8.191193	-3.2606	2.52368
С	6.773729	0.362347	0.790087	С	10.13782	-3.77707	1.178814
С	7.588789	-0.73269	0.808475	С	8.906161	-3.57835	3.66889
С	7.258672	-1.906	0.079177	Н	7.154408	-2.9502	2.588213
С	6.041721	-1.90385	-0.66776	С	10.84007	-4.09608	2.331142
С	5.227471	-0.81114	-0.67683	Н	10.61646	-3.83779	0.207918
С	-3.91583	0.812079	1.034197	С	10.2315	-3.99727	3.58052
С	-4.97686	-0.07405	1.144633	Н	8.420171	-3.50802	4.636705
С	-5.71606	-0.48829	0.025192	Н	11.87483	-4.41391	2.253321
С	-5.33754	0.049284	-1.21563	Н	10.78691	-4.24473	4.479073
С	-4.29373	0.954206	-1.33288	В	-6.90174	-1.50044	0.153697
С	-3.56003	1.350204	-0.20817	С	-8.19723	0.855603	1.566765
Ν	8.081789	-3.02133	0.097323	Н	-7.28928	1.399513	1.847446
С	8.214406	-3.83143	-1.05745	Н	-8.22991	0.838894	0.475493
С	-7.32981	-2.33971	-1.11731	Н	-9.05198	1.441329	1.916683
С	-7.63114	-1.64829	1.549789	С	-7.09576	-4.14836	1.632355
С	8.246927	-5.22683	-0.94078	Н	-7.45735	-4.35296	0.621867
С	8.292219	-3.23907	-2.3239	Н	-6.00444	-4.06995	1.574547

С	8.401924	-4.03638	-3.45385	Н	-7.32474	-5.0158	2.256805
С	8.437921	-5.42344	-3.33894	С	-9.6104	-2.02476	5.40363
С	8.362288	-6.01154	-2.07753	Н	-10.1161	-2.98948	5.505457
С	-8.64852	-2.28778	-1.62491	Н	-8.88008	-1.95484	6.21834
С	-8.99463	-3.02491	-2.75501	Н	-10.3487	-1.23319	5.558453
С	-8.08002	-3.8455	-3.40872	С	-9.71329	-1.41848	-0.99717
С	-6.78871	-3.90865	-2.89792	Н	-9.84361	-1.63716	0.065299
С	-6.39763	-3.16483	-1.78499	Н	-9.46624	-0.35422	-1.07907
С	-8.8702	-0.67283	3.403976	Н	-10.6754	-1.56612	-1.49457
С	-8.93834	-1.89519	4.061978	С	-4.96034	-3.30382	-1.33064
С	-8.34993	-2.99558	3.444876	Н	-4.32809	-2.52505	-1.76954
С	-7.71407	-2.89627	2.209792	Н	-4.84765	-3.22771	-0.2472
С	-8.21905	-0.52875	2.178965	Н	-4.55353	-4.2705	-1.64066
Н	2.708957	8.464466	-0.62646	С	-8.47337	-4.62384	-4.63671
Н	0.930009	8.669332	-0.40358	Н	-8.36127	-4.0149	-5.54154
Н	5.388605	4.983601	2.167171	Н	-7.84903	-5.51269	-4.76308
Н	3.949586	7.010116	2.074441	Н	-9.51852	-4.94315	-4.58943
Н	-0.62189	7.213122	-2.91722	Н	1.832705	2.69159	-1.45162
Н	-2.44622	5.52094	-2.81104				

Table S. 27. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of *m*-**BTT** in the S_1 excited state.

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-7.92599	-0.74689	0.043748	Н	-0.44792	-1.27998	0.31268
С	-4.95927	-0.64293	0.735928	С	1.897395	-3.45702	-0.81984
С	-6.02448	-1.36246	1.278493	Н	1.913926	-4.30516	-2.79678
0	-7.04816	-1.7675	0.439451	Н	1.584182	-2.43634	1.048045
0	-7.25381	0.412444	-0.39066	Ν	3.070413	-4.12209	-0.39603
С	-6.17882	0.190681	-1.2265	Ν	2.22917	4.626247	0.376605
С	-5.00138	-0.32437	-0.70188	С	4.162413	-4.27766	-1.28771
С	-3.91488	-0.19736	1.639917	С	4.569814	-3.21759	-2.10256
С	-3.96137	-0.6482	3.009769	С	4.848711	-5.49299	-1.36077
С	-5.01835	-1.42993	3.458564	С	5.635648	-3.37701	-2.97889
С	-6.06794	-1.77333	2.605461	Н	4.046163	-2.26941	-2.04552
С	-6.30874	0.585389	-2.56817	С	5.92551	-5.6386	-2.22611
С	-5.24922	0.445197	-3.42494	Н	4.533932	-6.32142	-0.73538
С	-4.04128	-0.13917	-2.97562	С	6.323029	-4.58514	-3.04364
С	-3.91248	-0.54906	-1.61785	Н	5.938279	-2.54367	-3.60564
С	-2.90762	0.680623	1.259636	Н	6.448218	-6.58923	-2.26964

С	-1.86574	1.113781	2.141998	Н	7.159974	-4.70434	-3.72401
С	-1.91492	0.603883	3.481828	С	3.160581	-4.63856	0.921813
С	-2.90414	-0.23067	3.889098	С	2.07754	-5.30866	1.497746
С	-2.95516	-0.35427	-3.863	С	4.336685	-4.48704	1.661659
С	-1.80918	-0.97031	-3.44668	С	2.169391	-5.80629	2.791286
С	-1.68071	-1.43072	-2.10873	Н	1.164105	-5.43629	0.926983
С	-2.72636	-1.22073	-1.23472	С	4.427065	-5.00415	2.947685
Н	-8.55856	-0.41428	0.872702	Н	5.178935	-3.96311	1.222783
Н	-8.52962	-1.18179	-0.75903	С	3.344285	-5.66211	3.522758
Н	-5.03435	-1.75468	4.494995	Н	1.318089	-6.32297	3.223851
Н	-6.90789	-2.36795	2.946414	Н	5.348581	-4.87864	3.507984
Н	-7.25181	1.012987	-2.89127	Н	3.415278	-6.05858	4.530407
Н	-5.33141	0.758336	-4.4614	С	2.015933	5.471437	-0.74374
Н	-2.93899	1.076955	0.254939	С	0.801249	6.149719	-0.8907
Н	-2.91639	-0.60091	4.910538	С	3.017953	5.625206	-1.70778
Н	-3.05248	-0.017	-4.89117	С	0.595755	6.968492	-1.99171
Н	-2.65391	-1.6022	-0.22428	Н	0.032243	6.040014	-0.1342
Н	-1.13615	0.867031	4.187975	С	2.803232	6.451853	-2.80086
Н	-0.98393	-1.10322	-4.13867	Н	3.954119	5.089212	-1.59847
С	-0.83427	1.989676	1.702353	С	1.593136	7.124886	-2.95078
С	0.096324	2.601451	2.606948	Н	-0.34678	7.496614	-2.09412
С	-0.65684	2.324037	0.315852	Н	3.58381	6.562307	-3.54672
С	1.083499	3.443894	2.184661	Н	1.428779	7.767452	-3.80942
Н	-0.00389	2.433156	3.672082	С	3.478244	4.675728	1.047944
С	0.330625	3.167869	-0.11158	С	4.10285	3.492529	1.457011
Н	-1.2841	1.857331	-0.43269	С	4.086426	5.908194	1.310627
С	1.234604	3.760355	0.804799	С	5.318653	3.547547	2.123686
Н	1.740376	3.91052	2.909521	Н	3.637649	2.538235	1.236582
Н	0.44665	3.365159	-1.17122	С	5.305104	5.949821	1.971224
С	-0.44923	-2.12551	-1.66783	Н	3.595259	6.824728	1.00345
С	0.256142	-2.97323	-2.52874	С	5.926155	4.772876	2.383559
С	0.053108	-1.95736	-0.37226	Н	5.799516	2.62451	2.43126
С	1.401257	-3.63581	-2.1148	Н	5.76803	6.910026	2.17498
Н	-0.11572	-3.14993	-3.5332	Н	6.877773	4.811185	2.903275
С	1.206466	-2.60221	0.045137				

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-7.92599	-0.74689	0.043748	Н	-0.44792	-1.27998	0.31268
С	-4.95927	-0.64293	0.735928	С	1.897395	-3.45702	-0.81984
С	-6.02448	-1.36246	1.278493	Н	1.913926	-4.30516	-2.79678
0	-7.04816	-1.7675	0.439451	Н	1.584182	-2.43634	1.048045
0	-7.25381	0.412444	-0.39066	Ν	3.070413	-4.12209	-0.39603
С	-6.17882	0.190681	-1.2265	Ν	2.22917	4.626247	0.376605
С	-5.00138	-0.32437	-0.70188	С	4.162413	-4.27766	-1.28771
С	-3.91488	-0.19736	1.639917	С	4.569814	-3.21759	-2.10256
С	-3.96137	-0.6482	3.009769	С	4.848711	-5.49299	-1.36077
С	-5.01835	-1.42993	3.458564	С	5.635648	-3.37701	-2.97889
С	-6.06794	-1.77333	2.605461	Н	4.046163	-2.26941	-2.04552
С	-6.30874	0.585389	-2.56817	С	5.92551	-5.6386	-2.22611
С	-5.24922	0.445197	-3.42494	Н	4.533932	-6.32142	-0.73538
С	-4.04128	-0.13917	-2.97562	С	6.323029	-4.58514	-3.04364
С	-3.91248	-0.54906	-1.61785	Н	5.938279	-2.54367	-3.60564
С	-2.90762	0.680623	1.259636	Н	6.448218	-6.58923	-2.26964
С	-1.86574	1.113781	2.141998	Н	7.159974	-4.70434	-3.72401
С	-1.91492	0.603883	3.481828	С	3.160581	-4.63856	0.921813
С	-2.90414	-0.23067	3.889098	С	2.07754	-5.30866	1.497746
С	-2.95516	-0.35427	-3.863	С	4.336685	-4.48704	1.661659
С	-1.80918	-0.97031	-3.44668	С	2.169391	-5.80629	2.791286
С	-1.68071	-1.43072	-2.10873	Н	1.164105	-5.43629	0.926983
С	-2.72636	-1.22073	-1.23472	С	4.427065	-5.00415	2.947685
Н	-8.55856	-0.41428	0.872702	Н	5.178935	-3.96311	1.222783
Н	-8.52962	-1.18179	-0.75903	С	3.344285	-5.66211	3.522758
Н	-5.03435	-1.75468	4.494995	Н	1.318089	-6.32297	3.223851
Н	-6.90789	-2.36795	2.946414	Н	5.348581	-4.87864	3.507984
Н	-7.25181	1.012987	-2.89127	Н	3.415278	-6.05858	4.530407
Н	-5.33141	0.758336	-4.4614	С	2.015933	5.471437	-0.74374
Н	-2.93899	1.076955	0.254939	С	0.801249	6.149719	-0.8907
Н	-2.91639	-0.60091	4.910538	С	3.017953	5.625206	-1.70778
Н	-3.05248	-0.017	-4.89117	С	0.595755	6.968492	-1.99171
Н	-2.65391	-1.6022	-0.22428	Н	0.032243	6.040014	-0.1342
Н	-1.13615	0.867031	4.187975	С	2.803232	6.451853	-2.80086
Н	-0.98393	-1.10322	-4.13867	Н	3.954119	5.089212	-1.59847
С	-0.83427	1.989676	1.702353	С	1.593136	7.124886	-2.95078
С	0.096324	2.601451	2.606948	Н	-0.34678	7.496614	-2.09412

Table S. 28. Coordinates (Å) for the optimized structure (CAM-B3LYP/6-31G*) of *m*-**BTB** in the S_1 excited state.

С	-0.65684	2.324037	0.315852	Н	3.58381	6.562307	-3.54672
С	1.083499	3.443894	2.184661	Н	1.428779	7.767452	-3.80942
Н	-0.00389	2.433156	3.672082	С	3.478244	4.675728	1.047944
С	0.330625	3.167869	-0.11158	С	4.10285	3.492529	1.457011
Н	-1.2841	1.857331	-0.43269	С	4.086426	5.908194	1.310627
С	1.234604	3.760355	0.804799	С	5.318653	3.547547	2.123686
Н	1.740376	3.91052	2.909521	Н	3.637649	2.538235	1.236582
Н	0.44665	3.365159	-1.17122	С	5.305104	5.949821	1.971224
С	-0.44923	-2.12551	-1.66783	Н	3.595259	6.824728	1.00345
С	0.256142	-2.97323	-2.52874	С	5.926155	4.772876	2.383559
С	0.053108	-1.95736	-0.37226	Н	5.799516	2.62451	2.43126
С	1.401257	-3.63581	-2.1148	Н	5.76803	6.910026	2.17498
Н	-0.11572	-3.14993	-3.5332	Н	6.877773	4.811185	2.903275
С	1.206466	-2.60221	0.045137				

References:

[6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. H. Petersson, M. Nakatsuji, X. Caricato, H. P. F. Li, A. Hratchian, J. Izmaylov, G. Bloino, J. L. Zheng, M. Sonnenberg, M. Hada, K. Ehara, R. Toyota, J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao, T. Nakai, J. A. Vreven, J. E. Montgomery Jr., F. Peralta, M. Ogliaro, J. J. Bearpark, E. Heyd, K. N. Brothers, V. N. Kudin, T. Staroverov, R. Keith, J. Kobayashi, K. Normand, A. Raghavachari, J. C. Rendell, S. S. Burant, J. Iyengar, M. Tomasi, N. Cossi, J. M. Rega, M. Millam, J. E. Klene, J. B. Knox, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. E. Gomperts, O. Stratmann, A. J. Yazyev, R. Austin, C. Cammi, J. W. Pomelli, R. L. Ochterski, K. Martin, V. G. Morokuma, G. A. Zakrzewski, P. Voth, J. J. Salvador, S. Dannenberg, A. D. Dapprich, O. Daniels, J. B. Farkas, J. V. Foresman, J. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision C.01, 2010.

[7] (a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789; (b) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 1372; (c) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5648.

[8] (a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971, 54, 724; (b) A. D.
 McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.