| 1  | Modeling the tunable thermal conductivity of intercalated layered materials with                                          |
|----|---------------------------------------------------------------------------------------------------------------------------|
| 2  | three-directional anisotropic phonon dispersion and relaxation times                                                      |
| 3  | Chengjie Wang <sup>a,c</sup> , Maogang He <sup>a</sup> , Xiangyang Liu <sup>a</sup> , Jonathan A. Malen <sup>b,c, *</sup> |
| 4  | *Corresponding author E-mail: jonmalen@andrew.cmu.edu                                                                     |
| 5  | <sup>a</sup> MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an,                |
| 6  | Shaanxi 710049, PR China, <sup>b</sup> Department of Materials Science and Engineering, Carnegie Mellon                   |
| 7  | University, Pittsburgh, PA, USA 15213, °Department of Mechanical Engineering, Carnegie Mellon                             |
| 8  | University, Pittsburgh, PA, USA 15213.                                                                                    |
| 9  |                                                                                                                           |
| 10 | Supplementary information                                                                                                 |
| 11 |                                                                                                                           |
| 12 | A. Derivation for the TDA model                                                                                           |
| 13 | The general form of $G_s(\omega)$ (v <sup>2</sup> DOS) is a surface integral which can be calculated by projecting the 3D |
| 14 | isoenergy surface to a 2D plane (Ref [17]). Here we choose $q_a$ - $q_b$ plane for the projection and take $a$            |

15 direction for example, then the surface integral elements can be written as

$$dS_{\omega} = \sqrt{1 + \left(\frac{\partial q_c}{\partial q_a}\right)^2 + \left(\frac{\partial q_c}{\partial q_b}\right)^2} dq_a q_b$$
(S1)

16

19

17 where  $q_c$  can be expressed in terms of  $q_a$  and  $q_b$ ,  $q_c = \sqrt{\omega^2 - (v_a^2 q_a^2 + v_b^2 q_b^2)} / v_c$  and  $G_a(\omega)$  is expressed 18 as

$$G_{a}(\omega) = \frac{1}{8\pi^{3}} \iint_{S_{\omega}} \frac{dS_{\omega}}{\|\mathbf{v}_{g}\|} \mathbf{v}_{g,a}^{2} = \frac{1}{8\pi^{3}} \iint_{S_{\omega}} \sqrt{1 + \left(\frac{\partial q_{c}}{\partial q_{a}}\right)^{2} + \left(\frac{\partial q_{c}}{\partial q_{b}}\right)^{2}} \frac{dq_{a}q_{b}}{\|\mathbf{v}_{g}\|} \mathbf{v}_{g,a}^{2}$$
(S2)

20 The group velocity along the *a*-axis is  $d\omega/dq_a$ 

$$v_{g,a} = v_a^2 q_a / \omega \tag{S3}$$

22 The group velocity along the other two directions is similar, so the total group velocity is

23 
$$v_g = \sqrt{v_a^4 q_a^2 + v_b^4 q_b^2 + v_c^4 q_c^2} / \omega$$
(S4)

24 Eq. S2 can be evaluated by implementing the ellipse parametric equations

27

$$q_a = \frac{1}{v_a} \rho \cos \varphi, q_b = \frac{1}{v_b} \rho \sin \varphi$$
<sup>25</sup> (S5)

26 where  $\rho$  is the polar radius and  $\varphi$  is the polar angle. Substituting Eqs. S3-S5 to the Eq. S2, we get

$$G_a(\omega) = \frac{1}{8\pi^3} \int_0^{2\pi} \int_{\rho_{\min}}^{\rho_{\max}} \frac{v_a}{v_b v_c \omega} \sqrt{\frac{1}{\omega^2 - \rho^2}} \rho^3 (\cos \varphi)^2 d\rho d\varphi$$
(S6)

28 where the domain of  $\rho$  depends on the magnitudes of the isoenergy surface and boundary of the effective 29 FBZ. If cutoff frequencies along the *a*, *b* and *c*-axis satisfy  $\omega_a > \omega_b > \omega_c$ , we show three cases to 30 determine the domain of the  $\rho$  as shown in Figure S1.

When  $\omega < \omega_c$ , the whole isoenergy surface is within the effective FBZ, see case 1 in Figure S1, so there 31 32 is  $0 \le \rho \le \omega$ . For case 2, when  $\omega_c \le \omega \le \omega_b$ , the isoenergy surface exceeds the boundary of the effective FBZ in the c direction, and the projection of the isoenergy surface within the effective FBZ to  $q_a$ - $q_b$ 33 34 plane is an annulus whose outer edge is exactly the isoenergy surface projection. The inner edge is the intersecting line of isoenergy surface and the effective FBZ, here we assume it as an ellipse with the 35 same eccentricity as the outer ellipse to simplify the calculation. By solving the intersection of the 36 isoenergy surface and the effective FBZ, the domain of  $\rho$  can be determined as 37  $\omega_b \sqrt{(\omega^2 - \omega_c^2)/(\omega_b^2 - \omega_c^2)} \le \rho \le \omega$ . As for the case 3:  $\omega_b < \omega < \omega_a$ , the isoenergy surface lies outside 38 39 of the effective FBZ along the b and c directions. We project the isoenergy surface to the  $q_b$ - $q_c$  plane, and similarly derive  $G_a(\omega)$  as 40

41
$$G_{a}(\omega) = \frac{1}{8\pi^{3}} \int_{0}^{2\pi} \int_{\rho_{r,\min}}^{\rho_{r,\max}} \frac{v_{a}}{v_{b}v_{c}\omega} \sqrt{\omega^{2} - \rho_{r}^{2}} \rho_{r} d\rho_{r} d\varphi_{r}$$
(S7)

42 where  $\rho_r$  and  $\varphi_r$  are the parameters in ellipse parametric equation similar to  $\rho$  and  $\varphi$  in Eq. S5. Using the 43 eccentricity approximation for simplification like case 2, the domain of  $\rho_r$  is  $0 \le \rho_r \le$ 44  $\omega_{D,b} \sqrt{\left(\omega^2 - \omega_{D,a}^2\right) / \left(\omega_{D,b}^2 - \omega_{D,a}^2\right)}$ .

45 Based on the determined domain of  $\rho$  and  $\rho_r$  above, expression for  $G_a(\omega)$ ,  $G_b(\omega)$  and  $G_c(\omega)$  can be

- 46 obtained as shown in the main article. Substituting these expressions into Eq. 4, the thermal conductivity
- 47 along a, b and c direction is

$$k_{a} = \sum_{p} \frac{v_{a}}{6\pi^{2} v_{b} v_{c}} \frac{k_{b}^{4} T}{\pi^{3}} \begin{bmatrix} \int_{0}^{X_{c}} \frac{T^{2} X^{4} e^{X} \tau}{(e^{X} - 1)^{2}} dX + \frac{3T\theta_{D,c}}{2} \int_{X_{c}}^{X_{b}} \frac{X^{3} e^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\theta_{D,b}^{2} - (TX)^{2}}{\theta_{D,b}^{2} - \theta_{D,c}^{2}} \right)^{\frac{1}{2}} dX \\ - \frac{\theta_{D,c}^{3}}{2T} \int_{X_{c}}^{X_{b}} \frac{X e^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\theta_{D,b}^{2} - (TX)^{2}}{\theta_{D,b}^{2} - \theta_{D,c}^{2}} \right)^{\frac{1}{2}} dX + \int_{X_{b}}^{X_{a}} \frac{T^{2} X^{4} e^{X} \tau}{(e^{X} - 1)^{2}} dX \\ - \frac{\theta_{D,a}^{3}}{T} \int_{X_{b}}^{X_{a}} \frac{X e^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\theta_{D,b}^{2} - (TX)^{2}}{\theta_{D,b}^{2} - \theta_{D,a}^{2}} \right)^{\frac{1}{2}} dX \\ - \frac{\theta_{D,a}^{3}}{T} \int_{X_{b}}^{X_{a}} \frac{X e^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\theta_{D,b}^{2} - (TX)^{2}}{\theta_{D,b}^{2} - \theta_{D,a}^{2}} \right)^{\frac{1}{2}} dX \\ \end{bmatrix}$$
(S8)

$$k_{b} = \sum_{p} \frac{v_{b}}{6\pi^{2} v_{a} v_{c}} \frac{k_{b}^{4} T}{\hbar^{3}} \left\{ -\frac{\frac{\partial^{2}}{\partial c}}{2T} \int_{X_{c}}^{X_{b}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,b}} - \frac{(TX)^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX - \frac{\frac{\partial^{2}}{\partial c_{b,c}}}{2T} \int_{X_{c}}^{X_{b}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,b}} - \frac{(TX)^{2}}{\partial c_{b,c}} \right)^{\frac{3}{2}} dX + \int_{X_{b}}^{X_{a}} \frac{T^{2} X^{4} e^{X} \tau}{(e^{X} - 1)^{2}} dX - \frac{\frac{\partial^{2}}{\partial c_{b,c}}}{2T} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,b}} - \frac{(TX)^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \int_{X_{b}}^{X_{a}} \frac{T^{2} X^{4} e^{X} \tau}{(e^{X} - 1)^{2}} dX - \frac{\frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,b}} - \frac{(TX)^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \int_{X_{b}}^{X_{a}} \frac{T^{2} X^{4} e^{X} \tau}{(e^{X} - 1)^{2}} dX + \frac{\frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,b}} - \frac{(TX)^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \frac{\frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,b}} - \frac{\partial^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,c}} - \frac{\partial^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,c}} - \frac{\partial^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,c}} - \frac{\partial^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,c}} - \frac{\partial^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,c}} - \frac{\partial^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{a}} \frac{Xe^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\partial^{2}}{\partial c_{b,c}} - \frac{\partial^{2}}{\partial c_{b,c}} \right)^{\frac{1}{2}} dX + \frac{\partial^{2}}{\partial c_{b,c}} \int_{X_{b}}^{X_{b}} \frac{\partial^{2}}{\partial c_{b,c}} \frac{\partial^{2}}{\partial c$$

49

$$k_{c} = \sum_{p} \frac{v_{c}}{6\pi^{2} v_{a} v_{b}} \frac{k_{b}^{4} T}{\hbar^{3}} \left[ + \int_{X_{b}}^{X_{a}} \frac{T^{2} X^{4} e^{X} \tau}{(e^{X} - 1)^{2}} dX + \frac{\theta_{D,c}^{3}}{T} \int_{X_{c}}^{X_{b}} \frac{X e^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\theta_{D,b}^{2} - (TX)^{2}}{\theta_{D,b}^{2} - \theta_{D,c}^{2}} \right)^{\frac{1}{2}} dX \right] \\ + \int_{X_{b}}^{X_{a}} \frac{T^{2} X^{4} e^{X} \tau}{(e^{X} - 1)^{2}} dX - \frac{3T \theta_{D,a}}{2} \int_{X_{b}}^{X_{a}} \frac{X^{3} e^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\theta_{D,b}^{2} - (TX)^{2}}{\theta_{D,b}^{2} - \theta_{D,a}^{2}} \right)^{\frac{1}{2}} dX \\ + \frac{\theta_{D,a}^{3}}{2T} \int_{X_{b}}^{X_{a}} \frac{X e^{X} \tau}{(e^{X} - 1)^{2}} \left( \frac{\theta_{D,b}^{2} - (TX)^{2}}{\theta_{D,b}^{2} - \theta_{D,a}^{2}} \right)^{\frac{1}{2}} dX$$

$$(S10)$$

50

51 where  $X_a$  is  $\omega_a/T$ , and  $X_b$  and  $X_c$  are similar.





**Figure S1**. The relationship between the isoenergy surface and the effective FBZ for three frequency regimes. Case 1, all of the states on the isoenergy surface are allowed, the projection to the  $q_a$ - $q_b$  plane is an ellipse; Case 2, orange shading on the isoenergy surface is the allowed states, the projection to the  $q_a$ - $q_b$  plane is an elliptical ring; Case 3, orange shading on the isoenergy surface is the allowed states, the projection to the  $q_b$ - $q_c$  plane is an elliptical ring; Case 3, orange shading on the isoenergy surface is the allowed states, the projection to the  $q_b$ - $q_c$  plane is an ellipse.

63

## 58 **B.** $G_s(\omega)$ using polynomial and sine function dispersions

59  $S_{\omega}$ , the isoenergy surface, can also be defined for a dispersion relationship with arbitrary functional 60 form as  $\omega^2 = f_a^2(q_a) + f_b^2(q_b) + f_c^2(q_c)$ . We consider two examples here: a polynomial function 61 of the form  $f_a(q_a) = A_1 q_a^2 + B_1 q_a$  and a sine function of the form  $f_a(q_a) = a_1 \sin(b_1 q_a)$  with *b* and *c* 62 directions are similarly defined. For the polynomial dispersion we have,

$$\frac{\left(A_{1}q_{a}^{2}+B_{1}q_{a}\right)^{2}}{\omega^{2}}+\frac{\left(A_{2}q_{b}^{2}+B_{2}q_{c}\right)^{2}}{\omega^{2}}+\frac{\left(A_{3}q_{c}^{2}+B_{3}q_{c}\right)^{2}}{\omega^{2}}=1$$
(S11)

64 For the sine function dispersion, we have,

65 
$$\frac{(a_1 \sin(b_1 q_a))^2}{\omega^2} + \frac{(a_2 \sin(b_2 q_b))^2}{\omega^2} + \frac{(a_3 \sin(b_3 q_c))^2}{\omega^2} = 1$$
(S12)

- 66 These assumptions create isoenergy surfaces that are irregular.
- 67 Choosing  $q_a$ - $q_b$  plane for the projection, so the surface integral elements can also be written as

68 
$$dS_{\omega} = \sqrt{1 + \left(\frac{\partial q_{c}}{\partial q_{a}}\right)^{2} + \left(\frac{\partial q_{c}}{\partial q_{b}}\right)^{2}} dq_{a}q_{b}, \text{ and } G_{a}(\omega) \text{ can also be expressed as}$$

$$G_{a}(\omega) = \frac{1}{8\pi^{3}} \iint_{S_{\omega}} \sqrt{1 + \left(\frac{\partial q_{c}}{\partial q_{a}}\right)^{2} + \left(\frac{\partial q_{c}}{\partial q_{b}}\right)^{2}} \frac{dq_{a}q_{b}}{\|\mathbf{v}_{g}\|} \mathbf{v}_{g,a}^{2}$$

$$(S13)$$

70 The group velocity along the *a*-axis is  $d\omega/dq_a$ 

$$v_{g,a} = f_a\left(q_a\right) \frac{df_a\left(q_a\right)}{\omega dq_a} \tag{S14}$$

72 The group velocity along the other two directions is similar, so the total group velocity is

$$v_{g} = \sqrt{\left[f_{a}\left(q_{a}\right)\frac{df_{a}\left(q_{a}\right)}{dq_{a}}\right]^{2} + \left[f_{b}\left(q_{b}\right)\frac{df_{b}\left(q_{b}\right)}{dq_{b}}\right]^{2} + \left[f_{c}\left(q_{c}\right)\frac{df_{c}\left(q_{c}\right)}{dq_{c}}\right]^{2} / \omega$$
(S15)

By substituting Eqs. S11-S12 and S14-S15 to the Eq. S13, we can determine  $G_a$  and similarly  $G_b$  and  $G_c$ for a dispersion relationship with a specified functional form in the *a*, *b*, and *c* directions. While analytical solutions, similar to those found for linear dispersion may be difficult, numerical evaluation is possible with this framework.

78

7

## 79 C. Stepwise integration approach to get the accumulation function

80 Here we restrict the in-plane dispersion to be isotropic to simplify the derivation. Similar to the

81 derivation for  $G_a(\omega)$  above, the expression for  $G_{ab}(\omega)$  is

$$G_{ab}(\omega) = \frac{1}{8\pi^3} \int_0^{2\pi} \int_0^{q_{ab,max}} \sqrt{\frac{\omega^2}{v_c^2 (\omega^2 - v_{ab}^2 q_{ab}^2)}} q_{ab} dq_{ab} d\varphi$$
(S16)

82

$$k_{ab} = \sum_{p} \frac{1}{4\pi^2} \int_{\omega} \hbar \omega \frac{\partial f_{BE}}{\partial T} \tau \int_{0}^{q_{ab,max}} \sqrt{\frac{\omega^2}{v_c^2 \left(\omega^2 - v_{ab}^2 q_{ab}^2\right)}} q_{ab} dq_{ab} d\omega$$
(S17)

84

85 It shows that the thermal conductivity is actually an integral of both  $\omega$  and  $q_{ab}$ . Now let's express Eq.

Г

86 S17 qualitatively by

$$k_{ab} = \int_{\omega} k_{ab,\omega} d\omega$$
(S18)

where  $k_{ab,\omega} = \int_{0}^{q_{max}} f(q_{ab}, \omega) dq_{ab}$ ,  $f(q_{ab}, \omega)$  represents a function of  $q_{ab}$  and  $\omega$ . The first step of our approach is to consider the total thermal conductivity  $k_{ab}$  as a sum of the thermal conductivity per frequency  $k_{ab,\omega}$ . Figure S2 shows  $k_{ab,\omega}$  as function of  $\omega$ . If we assume a specific  $\omega_1$  for example,  $k_{ab,\omega_1}$  can be also considered as a sum of thermal conductivity for each  $q_{ab}$  at this  $\omega_1$ . By using  $v_{g,ab} = v_{ab}^2 q_{ab} / \omega = \Lambda_{ab} \tau_{ab}^{-1}$ ,  $q_{ab}$  can be expressed as a function of MFP  $\Lambda_{ab}$  and each wave vector is corresponding to a MFP, so  $k_{ab,\omega_1}$  is also a sum of thermal conductivity for each  $\Lambda_{ab}$ , which is the second step of our approach. Here the accumulation function of  $k_{ab,\omega_1}$  can be calculated as

$$\alpha_{\omega 1} = \frac{\int_{0}^{\Lambda_{ab}^{*}} f\left(\Lambda_{ab}, \omega_{1}\right) d\Lambda_{ab}}{\int_{0}^{\Lambda_{max}} f\left(\Lambda_{ab}, \omega_{1}\right) d\Lambda_{ab}}$$
(S19)

95

87

96 as shown in Figure S3. Adding all of these accumulation function for  $k_{ab,\omega}$ , we can get the accumulation

97 function for the total thermal conductivity.



99 Figure S2. Thermal conductivity per frequency  $\omega$  as a function of  $\omega$ , the area formed by this blue line and axis is the

100

in-plane thermal conductivity of MoS<sub>2</sub>.

<sup>98</sup> 



**Figure S3**. Accumulation function of  $k_{ab,\omega_1}$ .

In order to better describe this approach, we plot  $k_{ab, \omega}$  as a function of  $\omega$  and  $\Lambda_{ab}$  simultaneously as it 103 104 show in Figure S4a, in which the black volume is formed by a large number of curves. The blue line in 105 Figure S4a is actually the same as that in Figure S2 and the red section at  $\omega_1$  is actually the Figure S3 106 (accumulation function of  $k_{ab, \omega 1}$ ). Figure S4c shows the front view of the 3D surface and is also a sum 107 of accumulation function of  $k_{ab,\omega}$ . Therefore, in order to get the accumulation function for total thermal 108 conductivity, we just need to add the accumulation function of  $k_{ab, \omega}$  for all  $\omega$ , that is to say, get the 109 projected area of this 3D volume on each section vertical to the  $\Lambda_{ab}$  axis (such as the orange section at 110  $\Lambda_1$ ). The left view of this 3D volume (Figure S4b) shows the maximum projected area (black area) which is the total thermal conductivity and is equal to the area formed by the blue line. Finally, we get 111 the normalized accumulation function for total thermal conductivity as it shown in Figure S4d. 112



114

**Figure S4**. 3D plotting for thermal conductivity per  $\omega$  as a function of  $\omega$  and  $\Lambda$ 

115

## 116 **D. Parameters used in our calculation**

- 117 Table S1. Parameters used in our calculation, which are extracted from Ref [9] (MoS<sub>2</sub> and graphite), Ref [47] (black P),
- 118 Ref [48] (WSe<sub>2(1-x)</sub>Te<sub>2x</sub>), Ref [49] (TiS<sub>2</sub>) and Ref [50] (SnSe<sub>2</sub>). Subscript T, L and Z represent TA, LA and ZA branches,
- 119 for example,  $v_{ab,L}$  means sound velocity of LA branch along the in-plane direction.

| Branches | Properties                                                       | $MoS_2$ | Graphite | Black P                | $WSe_{2(1-x)}Te_{2x}$ | $TiS_2$ | SnSe <sub>2</sub> |
|----------|------------------------------------------------------------------|---------|----------|------------------------|-----------------------|---------|-------------------|
|          | $v_{c,T}/\mathrm{m}\cdot\mathrm{s}^{-1}$                         | 1938    | 1487     | 1090                   | 1572                  | 2825    | 1499              |
|          | $v_{ab,L}/\mathrm{m}\cdot\mathrm{s}^{-1}$                        | 6850    | 22152    | 9450 (ZZ)<br>4360 (AC) | 5003                  | 5284    | 4144              |
|          | $\omega_{c,T}/10^{12}$ ·rad·s <sup>-1</sup>                      | 7.77    | 8.14     | 3.8                    | 3.4                   | 7.54    | 4.59              |
| TL1      | $\omega_{ab,L}/10^{12} \cdot \mathrm{rad} \cdot \mathrm{s}^{-1}$ | 44.5    | 252      | 36.8(ZZ)<br>24.3       | 26.8                  | 40.8    | 22.0              |
|          | $q_{c,\rm eff}/10^{10}{\cdot}{\rm m}^{-1}$                       | 0.401   | 0.547    | 0.349                  | 0.216                 | 0.267   | 0.306             |
|          | $q_{ab,eff}/10^{10}$ ·m <sup>-1</sup>                            | 0.650   | 1.138    | 0.389(ZZ)<br>0.557(AC) | 0.536                 | 0.772   | 0.531             |

|     | $v_{c,L}/\text{m}\cdot\text{s}^{-1}$           | 3206  | 4138  | 4420                   | 2484  | 4383  | 2143  |
|-----|------------------------------------------------|-------|-------|------------------------|-------|-------|-------|
|     | $v_{ab,Z'}$ m·s <sup>-1</sup>                  | 2685  | 5858  | 2540(ZZ)<br>1395(AC)   | 2442  | 3008  | 1499  |
|     | $\omega_{c,L}/10^{12}$ ·rad·s <sup>-1</sup>    | 12.8  | 22.4  | 14.4                   | 5.5   | 15.7  | 6.91  |
| TL2 | $\omega_{ab,Z}/10^{12}$ ·rad·s <sup>-1</sup>   | 34.1  | 94.9  | 26(ZZ)<br>12(AC)       | 20.2  | 18.8  | 9.42  |
|     | $q_{c,\rm eff}/10^{10} \cdot {\rm m}^{-1}$     | 0.399 | 0.541 | 0.326                  | 0.221 | 0.358 | 0.332 |
|     | $q_{ab,\mathrm{eff}}/10^{10}$ ·m <sup>-1</sup> | 1.27  | 1.62  | 1.02(ZZ)<br>0.86(AC)   | 0.827 | 0.625 | 0.628 |
|     | $v_{c,T}/\mathrm{m}\cdot\mathrm{s}^{-1}$       | 1938  | 1487  | 2540                   | 1572  | 2825  | 1499  |
|     | $v_{ab,T}/\mathrm{m}\cdot\mathrm{s}^{-1}$      | 5372  | 14236 | 4190(ZZ)<br>4190(AC)   | 3226  | 3295  | 1950  |
|     | $\omega_{c,T}/10^{12}$ ·rad·s <sup>-1</sup>    | 7.77  | 8.14  | 8.8                    | 3.4   | 7.54  | 4.59  |
| ТА  | $\omega_{ab,T}/10^{12}$ ·rad·s <sup>-1</sup>   | 30.7  | 162   | 23.5(ZZ)<br>14.2(AC)   | 23.9  | 31.4  | 15.7  |
|     | $q_{c, eff} / 10^{10} \cdot m^{-1}$            | 0.401 | 0.547 | 0.346                  | 0.216 | 0.267 | 0.306 |
|     | $q_{ab,{ m eff}}/10^{10}{ m \cdot m^{-1}}$     | 0.571 | 1.138 | 0.561(ZZ)<br>0.339(AC) | 0.741 | 0.953 | 0.805 |
|     | $q_{c,m}/10^{10}$ ·m <sup>-1</sup>             | 0.401 | 0.55  | 0.72                   | 0.258 | 0.649 | 0.612 |
|     | $q_{ab,{ m m}}/10^{10}{ m \cdot m^{-1}}$       | 1.27  | 1.62  | 1.25(ZZ),<br>0.86(AC)  | 1.22  | 1.17  | 1.05  |

Sound velocities and cutoff frequencies are used in the calculation by Callaway Model and TDA model, while the sound velocities and cutoff wave vectors are applied in the calculation by BvKS Model. Cutoff wave vectors are obtained by solving equations  $\eta_{pub} = \frac{1}{6\pi^2} (q_{c,m}q_{ab,m}^2)^{1/3}$  and  $q_{c,m} / q_{ab,m} = \gamma$ , where  $\eta_{pub}$  is the number density of primitive unit cells,  $\gamma$  is the anisotropy of cutoff wave vectors in reciprocal space, which is corresponding to the anisotropy of lattice constants.

## 125 E. Relaxation times using RTA and first-principle calculations

126 The relaxation times of the three acoustic phonon branches of  $MoS_2$ , calculated by first-principles, are

127 shown in Figure S5.<sup>31</sup> Our RTA model uses just one parameter B to characterize relaxation times due to

Umklapp phonon scattering of all three branches, so a single prediction from our analysis is shown for comparison in Figure S5. The RTA results agree reasonably well with the first principles calculation for frequencies above 1 THz, but deviate from the longer relaxation times exhibited by the ZA phonons in the low frequency region. In the Figure S6, our RTA predictions for graphite are compared with first principles calculations of the relaxation times for graphene.<sup>32</sup> Similar trends are exhibited but the RTA results are shifted to longer relaxation times at all frequencies.



134

135 Figure S5. Relaxation times of pure MoS<sub>2</sub> in the in-plane direction at 300K by (a) relaxation time approximation (RTA)

136 and (b) first principle (1stP) calculation by Zhu et al. (Ref [31] in the manuscript).



137

138 Figure S6. Relaxation times of pure graphite and graphene in the in-plane direction at 300K by (a) relaxation time

139 approximation (RTA) and (b) first principle (1stP) calculation by Taheri et al. (Ref [32] in the manuscript).

140