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12 A. Derivation for the TDA model

13 The general form of Gs(ω) (v2DOS) is a surface integral which can be calculated by projecting the 3D 

14 isoenergy surface to a 2D plane (Ref [17]). Here we choose qa-qb plane for the projection and take a 

15 direction for example, then the surface integral elements can be written as 

16 (S1)

2 2

1 c c
a b

a b

q qdS dq q
q q

    
         

17 where qc can be expressed in terms of qa and qb, and Ga(ω) is expressed  2 2 2 2 2 /c a a b b cq v q v q v  

18 as
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20 The group velocity along the a-axis is dω/dqa

21 (S3)
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22 The group velocity along the other two directions is similar, so the total group velocity is
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23 (S4)
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24 Eq. S2 can be evaluated by implementing the ellipse parametric equations

25 (S5)
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26 where ρ is the polar radius and φ is the polar angle. Substituting Eqs. S3-S5 to the Eq. S2, we get
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28 where the domain of ρ depends on the magnitudes of the isoenergy surface and boundary of the effective 

29 FBZ. If cutoff frequencies along the a, b and c-axis satisfy ωa > ωb > ωc, we show three cases to 

30 determine the domain of the ρ as shown in Figure S1. 

31 When ω < ωc, the whole isoenergy surface is within the effective FBZ, see case 1 in Figure S1, so there 

32 is 0 ≤ ρ ≤ ω. For case 2, when ωc < ω < ωb, the isoenergy surface exceeds the boundary of the effective 

33 FBZ in the c direction, and the projection of the isoenergy surface within the effective FBZ to qa-qb 

34 plane is an annulus whose outer edge is exactly the isoenergy surface projection. The inner edge is the 

35 intersecting line of isoenergy surface and the effective FBZ, here we assume it as an ellipse with the 

36 same eccentricity as the outer ellipse to simplify the calculation. By solving the intersection of the 

37 isoenergy surface and the effective FBZ, the domain of ρ can be determined as 

38  ≤ ρ ≤ ω. As for the case 3: ωb < ω < ωa, the isoenergy surface lies outside    2 2 2 2/b c b c     

39 of the effective FBZ along the b and c directions. We project the isoenergy surface to the qb-qc plane, 

40 and similarly derive Ga(ω) as
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42 where ρr and φr are the parameters in ellipse parametric equation similar to ρ and φ in Eq. S5. Using the 

43 eccentricity approximation for simplification like case 2, the domain of ρr is 0 ≤ ρr ≤

44 .   2 2 2 2
, , , ,/D b D a D b D a     

45 Based on the determined domain of ρ and ρr above, expression for Ga(ω), Gb(ω) and Gc(ω) can be 



46 obtained as shown in the main article. Substituting these expressions into Eq. 4, the thermal conductivity 

47 along a, b and c direction is 
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51 where Xa is ωa/T, and Xb and Xc are similar.



52

53 Figure S1. The relationship between the isoenergy surface and the effective FBZ for three frequency regimes. Case 1, 

54 all of the states on the isoenergy surface are allowed, the projection to the qa-qb plane is an ellipse; Case 2, orange shading 

55 on the isoenergy surface is the allowed states, the projection to the qa-qb plane is an elliptical ring; Case 3, orange shading 

56 on the isoenergy surface is the allowed states, the projection to the qb-qc plane is an ellipse.

57

58 B. Gs(ω) using polynomial and sine function dispersions

59 , the isoenergy surface, can also be defined for a dispersion relationship with arbitrary functional S

60 form as . We consider two examples here: a polynomial function      2 2 2 2
a a b b c cf q f q f q   

61 of the form  and a sine function of the form  with b and c   2
1 1=a a a af q A q B q    1 1=a sina a af q b q

62 directions are similarly defined. For the polynomial dispersion we have,

63 (S11)
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64 For the sine function dispersion, we have,

65 (S12)
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66 These assumptions create isoenergy surfaces that are irregular.

67 Choosing qa-qb plane for the projection, so the surface integral elements can also be written as 

68 , and Ga(ω) can also be expressed as
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70 The group velocity along the a-axis is dω/dqa

71 (S14)
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72 The group velocity along the other two directions is similar, so the total group velocity is

73 (S15)
           2 2 2

= + /a a b b c c
g a a b b c c

a b c

df q df q df q
v f q f q f q

dq dq dq


     
     

     

74 By substituting Eqs. S11-S12 and S14-S15 to the Eq. S13, we can determine Ga and similarly Gb and Gc 

75 for a dispersion relationship with a specified functional form in the a, b, and c directions. While 

76 analytical solutions, similar to those found for linear dispersion may be difficult, numerical evaluation 

77 is possible with this framework.  

78

79 C. Stepwise integration approach to get the accumulation function

80 Here we restrict the in-plane dispersion to be isotropic to simplify the derivation. Similar to the 

81 derivation for Ga(ω) above, the expression for Gab(ω) is

82 (S16)
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83 So the thermal conductivity along the ab direction is

84 (S17)
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85 It shows that the thermal conductivity is actually an integral of both ω and qab. Now let’s express Eq. 



86 S17 qualitatively by 

87 (S18)
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88 where ,  represents a function of qab and ω.
 max

, 0
= ,

q

ab ab abk f q dq   ,abf q 

89 The first step of our approach is to consider the total thermal conductivity kab as a sum of the thermal 

90 conductivity per frequency kab, ω. Figure S2 shows kab, ω as function of ω. If we assume a specific ω1 for 

91 example, kab, ω1 can be also considered as a sum of thermal conductivity for each qab at this ω1. By using

92 , qab can be expressed as a function of MFP Λab and each wave vector is 2 1
, = /g ab ab ab ab abv v q    

93 corresponding to a MFP, so kab, ω1 is also a sum of thermal conductivity for each Λab, , which is the 

94 second step of our approach. Here the accumulation function of kab, ω1 can be calculated as

95  (S19)
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96 as shown in Figure S3. Adding all of these accumulation function for kab,ω, we can get the accumulation 

97 function for the total thermal conductivity.

98
99 Figure S2. Thermal conductivity per frequency ω as a function of ω, the area formed by this blue line and axis is the 

100 in-plane thermal conductivity of MoS2.



101
102 Figure S3. Accumulation function of kab,ω1.

103 In order to better describe this approach, we plot kab, ω as a function of ω and Λab simultaneously as it 

104 show in Figure S4a, in which the black volume is formed by a large number of curves. The blue line in 

105 Figure S4a is actually the same as that in Figure S2 and the red section at ω1 is actually the Figure S3 

106 (accumulation function of kab, ω1). Figure S4c shows the front view of the 3D surface and is also a sum 

107 of accumulation function of kab, ω. Therefore, in order to get the accumulation function for total thermal 

108 conductivity, we just need to add the accumulation function of kab, ω for all ω, that is to say, get the 

109 projected area of this 3D volume on each section vertical to the Λab axis (such as the orange section at 

110 Λ1). The left view of this 3D volume (Figure S4b) shows the maximum projected area (black area) 

111 which is the total thermal conductivity and is equal to the area formed by the blue line. Finally, we get 

112 the normalized accumulation function for total thermal conductivity as it shown in Figure S4d.



113

114 Figure S4. 3D plotting for thermal conductivity per ω as a function of ω and Λ

115

116 D. Parameters used in our calculation 

117 Table S1. Parameters used in our calculation, which are extracted from Ref [9] (MoS2 and graphite), Ref [47] (black P), 

118 Ref [48] (WSe2(1-x)Te2x), Ref [49] (TiS2) and Ref [50] (SnSe2). Subscript T, L and Z represent TA, LA and ZA branches, 

119 for example, vab,L means sound velocity of LA branch along the in-plane direction.

Branches Properties MoS2 Graphite Black P WSe2(1-x)Te2x TiS2 SnSe2

vc,T/m∙s-1 1938 1487 1090 1572 2825 1499

vab,L/m∙s-1 6850 22152
9450 (ZZ)

4360 (AC)
5003 5284 4144

ωc,T /1012∙rad∙s-1 7.77 8.14 3.8 3.4 7.54 4.59

ωab,L/1012∙rad∙s-1 44.5 252
36.8(ZZ)

24.3
26.8 40.8 22.0

qc,eff/1010∙m-1 0.401 0.547 0.349 0.216 0.267 0.306

TL1

qab,eff/1010∙m-1 0.650 1.138
0.389(ZZ)

0.557(AC)
0.536 0.772 0.531



vc,L/m∙s-1 3206 4138 4420 2484 4383 2143

vab,Z/m∙s-1 2685 5858
2540(ZZ)

1395(AC)
2442 3008 1499

ωc,L/1012∙rad∙s-1 12.8 22.4 14.4 5.5 15.7 6.91

ωab,Z/1012∙rad∙s-1 34.1 94.9
26(ZZ)

12(AC)
20.2 18.8 9.42

qc,eff/1010∙m-1 0.399 0.541 0.326 0.221 0.358 0.332

TL2

qab,eff/1010∙m-1 1.27 1.62
1.02(ZZ)

0.86(AC)
0.827 0.625 0.628

vc,T/m∙s-1 1938 1487 2540 1572 2825 1499

vab,T/m∙s-1 5372 14236
4190(ZZ)

4190(AC)
3226 3295 1950

ωc,T/1012∙rad∙s-1 7.77 8.14 8.8 3.4 7.54 4.59

ωab,T/1012∙rad∙s-1 30.7 162
23.5(ZZ)

14.2(AC)
23.9 31.4 15.7

qc,eff/1010∙m-1 0.401 0.547 0.346 0.216 0.267 0.306

TA

qab,eff/1010∙m-1 0.571 1.138
0.561(ZZ)

0.339(AC)
0.741 0.953 0.805

qc,m/1010∙m-1 0.401 0.55 0.72 0.258 0.649 0.612

qab,m/1010∙m-1 1.27 1.62
1.25(ZZ), 

0.86(AC)
1.22 1.17 1.05

120 Sound velocities and cutoff frequencies are used in the calculation by Callaway Model and TDA model, 

121 while the sound velocities and cutoff wave vectors are applied in the calculation by BvKS Model. Cutoff 

122 wave vectors are obtained by solving equations  and , where  1/32
pub ,m ,m2

1
6 c abq q


 ,m ,m/c abq q 

123 ηpub is the number density of primitive unit cells, γ is the anisotropy of cutoff wave vectors in reciprocal 

124 space, which is corresponding to the anisotropy of lattice constants.

125 E. Relaxation times using RTA and first-principle calculations 

126 The relaxation times of the three acoustic phonon branches of MoS2, calculated by first-principles, are 

127 shown in Figure S5.31 Our RTA model uses just one parameter B to characterize relaxation times due to 



128 Umklapp phonon scattering of all three branches, so a single prediction from our analysis is shown for 

129 comparison in Figure S5. The RTA results agree reasonably well with the first principles calculation for 

130 frequencies above 1 THz, but deviate from the longer relaxation times exhibited by the ZA phonons in 

131 the low frequency region. In the Figure S6, our RTA predictions for graphite are compared with first 

132 principles calculations of the relaxation times for graphene.32 Similar trends are exhibited but the RTA 

133 results are shifted to longer relaxation times at all frequencies.  
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135 Figure S5. Relaxation times of pure MoS2 in the in-plane direction at 300K by (a) relaxation time approximation (RTA) 

136 and (b) first principle (1stP) calculation by Zhu et al. (Ref [31] in the manuscript).
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138 Figure S6. Relaxation times of pure graphite and graphene in the in-plane direction at 300K by (a) relaxation time 

139 approximation (RTA) and (b) first principle (1stP) calculation by Taheri et al. (Ref [32] in the manuscript).
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