Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Asymmetric Sky-Blue Thermally Activated Delayed Fluorescence Emitters Bearing Tris(triazolo)triazine Moiety for Solution Processable Organic Light-Emitting Diodes

Zhou Fang,^a Shengyue Wang,^a Junxu Liao,^b Xinrui Chen,^a Yuanyuan Zhu,^a Weiguo Zhu^a*, Yafei Wang^a*

^aJiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China. Email: W. Zhu: <u>zhuwg18@126.com</u>; Y. Wang: <u>qiji830404@hotmail.com</u> ^bSchool of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China

Contents

Experimental part

Figure S1. Chemical structures and performances of the reported TTT-based TADF

emitters.

NMR & MS spectra (Figure S2-S11).

Figure S12. TGA curves of the compounds at N_2 atmosphere with a heating rate of 20°C min⁻¹.

Figure S13. PL spectra of TTT-Ac and TTT-2Ac in different solvent at room temperature.

Table S1. Calculated Photophysical data of the TADF emitters.

Figure S14. CV curves of compounds in CH₃CN solution.

Figure S15. The energy level diagrams and chemical structures of the materials in the devices.

Figure S16. CIE coordinates of the devices: (a): TTT-Ac (b) TTT-2Ac.

Figure S17. The EL performance of solution-processed devices.

Table S2. EL data for the devices based on TTT-Ac with different EML thickness.

Figure S18. Comparison of electroluminescence performances between reported

TADF emitters based on the tris(triazolo)triazine moiety and the new ones.

Experimental part

All synthetic materials are commercial from Energy Chemical Company Ltd. and used in the reaction directly. All reactions were carried out under N₂ atmosphere.

In order to determine the structure of the compound, ¹H NMR and ¹³C NMR spectra were acquired using a Bruker Dex-300/400 NMR instrument using CDCl₃ as a solvent. The NMR chemical shifts are reported in ppm with reference to residual protons and carbons of CDCl₃ (δ 7.26 ppm in ¹H NMR, δ 77.0 ppm in ¹³C NMR). Mass spectra (MS) were recorded on a Bruker Autoflex MALDI-TOF instrument using dithranol as a matrix.

Thermogravimetric analysis (TGA) was detected with a NETZSCH STA449 from 25°C to 600°C at a 20°C/min heating rate under N₂ atmosphere. To reveal the photophysical properties of emitters, UV-vis absorption spectra were measured by a SHIMADZU UV-1650PC. Steady-state photoluminescence (PL) spectra were obtained with a PTI QuantaMaster 40 steady-state fluorescence spectrofluorometer at room temperature. The luminescence lifetime, low temperature (77 K) fluorescence and phosphorescence spectra of the compounds in solution/film were measured with an Edinburgh FLS1000 transient-fluorescence spectrophotometer. Electrochemical property was evaluated by cyclic voltammetry with three typical electrodes in degassed CH₃CN solution with a rate of 100 mV/s in using a 273A (Princeton Applied Research). The CV system employed Bu₄NPF₆ as electrolyte. Platinum disk was used as the working electrode, platinum wire was regarded as the counter electrode and silver wire was used as the reference electrode. Ferrocenium/ferrocene

(Fc/Fc⁺) was used as the external standard compound. Each oxidation potential was calibrated using ferrocene as a reference.

Figure S1. Chemical structures and performances of the reported TTT-based TADF emitters.

Figure S2. ¹H NMR spectrum of TTT-Br in CDCl₃.

-1.60

Figure S6. ¹³C NMR spectrum of TTT-Ac in CDCl₃.

Figure S7. ¹³C NMR spectrum of TTT-2Ac in CDCl₃.

Figure S8. TOF-MS spectrum of TTT-Ac.

Figure S9. TOF-MS spectrum of TTT-2Ac.

MALDI, TTT-AC, 20211213

Meas. m/z # Ion Formula Score m/z err [ppm] Mean err [ppm] mSigma rdb e Conf N-Rule 637.256144 1 C39H29N10 100.00 637.257117 1.5 1.2 15.3 30.5 even ok

Figure S10. HRMS spectrum of TTT-Ac in CH₂Cl₂.

MALDI, TTT-ZAC, 20211213

Meas. m/z # Ion Formula Score m/z err [ppm] Mean err [ppm] mSigma rdb e Conf N-Rule 844.360839 1 C54H42N11 100.00 844.361917 1.3 0.9 17.4 39.5 even ok

Figure S11. HRMS spectrum of TTT-2Ac in CH₂Cl₂.

Figure S12. TGA curves of the compounds at N_2 atmosphere with a heating rate of 20°C min⁻¹.

Figure S13. PL spectra of TTT-Ac (a) and TTT-2Ac (b) in different solvents at room temperature.

Compound	$ au_{ m p}/arPsi_{ m p}$ (ns/%)	τ _d /Φ _d (μs/%)	k _p (10 ⁷ s ⁻¹)	k _d (10 ⁴ s ⁻¹)	k _{ISC} (10 ⁷ s ⁻¹)	k _{rISC} (10 ⁴ s ⁻¹)	k _r (10 ⁷ s ⁻¹)	k _{nr} (10 ⁴ s ⁻¹)
TTT-Ac	10.9/21	27.2/42	9.17	3.68	7.24	9.32	1.93	1.72
TTT-2Ac	11.9/10	20/37	8.4	5	7.56	20.55	0.84	2.95
$k_{\rm p} = 1/\tau_{\rm p}$		(1)						
$k_{\rm d} = 1/\tau_{\rm d}$		(2)						
$k_{\rm ISC} = (1 - \Phi_{\rm p})k_{\rm p}$		(3)						
$k_{\rm rISC} = k_{\rm p} k_{\rm d} \Phi_{\rm d} / k_{\rm ISC} \Phi_{\rm p}$		(4)						
$k_{\rm r} = \Phi_{\rm p}/\tau_{\rm p}$		(5)						
$k_{\rm nr} = k_{\rm d} - \Phi_{\rm p} k_{\rm rISC}$		(6	5)					

Table S1. Calculated Photophysical data of the TADF emitters.

Herein, τ_p and τ_d are the lifetime of prompt and delayed components. Φ_p and Φ_d are the prompt and delayed luminescence quantum efficiency, respectively. The k_p and k_d are the rate constant of prompt and delayed fluorescence. k_{ISC} is the rate constant of intersystem crossing, while k_{rISC} is the rate constant of reverse intersystem crossing between the S_1 and T_1 . k_r and k_{nr} are the radiative and nonradiative decay rate constant from S_1 to S_0 , respectively.

Figure S14. CV curves of compounds in CH₃CN solution.

Figure S15. The energy level diagrams and chemical structures of the materials in the devices.

Figure S16. CIE coordinates of the devices: (a): TTT-Ac; (b) TTT-2Ac.

Figure S17. Current density-voltage-luminance (J-V-L) curves (c) of TTT-Ac with different EML

thickness of 20 wt% dopants.

Table S2. EL data for the devices with different EML thickness.

Material	EML Thickness (nm)	Dopant wt%	V _{ON} V	L _{max} cd m ⁻²	CE _{max} cd A ⁻¹	EQE _{max} %	CIE (x, y)	Peak nm
TTT-Ac	30	20%	3.6	1078	16.21	9.26	(0.16 , 0.21)	470
	25	20%	3.6	996.4	17.37	10.01	(0.16 , 0.22)	474
	20	20%	3.6	935.3	14.52	8.48	(0.16 , 0.23)	470

Figure S18. EQE-wavelength curves of the TTT-based TADF emitter.