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Experimental part

All synthetic materials are commercial from Energy Chemical Company Ltd. and
used in the reaction directly. All reactions were carried out under N, atmosphere.

In order to determine the structure of the compound, 'H NMR and *C NMR
spectra were acquired using a Bruker Dex-300/400 NMR instrument using CDCI; as a
solvent. The NMR chemical shifts are reported in ppm with reference to residual
protons and carbons of CDCl; (8 7.26 ppm in 'H NMR, 8 77.0 ppm in 3C NMR).
Mass spectra (MS) were recorded on a Bruker Autoflex MALDI-TOF instrument
using dithranol as a matrix.

Thermogravimetric analysis (TGA) was detected with a NETZSCH STA449 from
25°C to 600°C at a 20°C/min heating rate under N, atmosphere. To reveal the
photophysical properties of emitters, UV-vis absorption spectra were measured by a
SHIMADZU UV-1650PC. Steady-state photoluminescence (PL) spectra were
obtained with a PTI QuantaMaster 40 steady-state fluorescence spectrofluorometer at
room temperature. The luminescence lifetime, low temperature (77 K) fluorescence
and phosphorescence spectra of the compounds in solution/film were measured with
an Edinburgh FLS1000 transient-fluorescence spectrophotometer. Electrochemical
property was evaluated by cyclic voltammetry with three typical electrodes in
degassed CH;CN solution with a rate of 100 mV/s in using a 273A (Princeton
Applied Research). The CV system employed BuysNPFg as electrolyte. Platinum disk
was used as the working electrode, platinum wire was regarded as the counter

electrode and silver wire was used as the reference electrode. Ferrocenium/ferrocene



(Fc/Fc*) was used as the external standard compound. Each oxidation potential was

calibrated using ferrocene as a reference.
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Figure S1. Chemical structures and performances of the reported TTT-based TADF

emitters.
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Figure S2. '"H NMR spectrum of TTT-Br in CDCl;.
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Figure S3. '"H NMR spectrum of TTT-2Br in CDCl;.
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Figure S4. 'H NMR spectrum of TTT-Ac in CDCls.
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Figure S6. 3C NMR spectrum of TTT-Ac in CDCls.

180

200




T T T T T T T T T T T T T T T T T

—36.12
—31.04

200 180 160 140 120 100 80 60 40 20 0
1 (ppm)

Figure S7. 3C NMR spectrum of TTT-2Ac in CDCl;.
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Figure S8. TOF-MS spectrum of TTT-Ac.
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Figure S12. TGA curves of the compounds at N, atmosphere with a heating rate of 20°C min’!.
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Figure S13. PL spectra of TTT-Ac (a) and TTT-2Ac (b) in different solvents at room temperature.



Table S1. Calculated Photophysical data of the TADF emitters.

7,/ P, T4/ Dy ky kq kisc kusc ky Kur
Compound
(ns/%) (ns/%) 107shH  (104shH)  (107sTh)  (A0¢s) (107 (1045

TTT-Ac 10.9/21 27.2/42 9.17 3.68 7.24 9.32 1.93 1.72

TTT-2Ac 11.9/10 20/37 8.4 5 7.56 20.55 0.84 2.95
ky=1/7, (H
ka= /14 (2)
kISC = (1'@p)kp (3)
kasc = kpka@alkisc D, “4)
k= ®y/t, %)
knr = kd' ¢pkrISC (6)

Herein, 7, and 74 are the lifetime of prompt and delayed components. @, and @4 are the prompt

and delayed luminescence quantum efficiency, respectively. The k;, and k4 are the rate constant of

prompt and delayed fluorescence. kisc is the rate constant of intersystem crossing, while k;sc is the

rate constant of reverse intersystem crossing between the S; and 7. k. and k,, are the radiative and

nonradiative decay rate constant from S to Sy, respectively.
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Figure S14. CV curves of compounds in CH;CN solution.
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Figure S15. The energy level diagrams and chemical structures of the materials in the devices.
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Figure S16. CIE coordinates of the devices: (a): TTT-Ac; (b) TTT-2Ac.
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Figure S17. Current density-voltage-luminance (J-V-L) curves (c¢) of TTT-Ac with different EML

thickness of 20 wt% dopants.

Table S2. EL data for the devices with different EML thickness.

EML
. ) Dopant Von Linax CE pax EQE ax CIE Peak
Material Thickness
wt% \% cdm?  cd A % x,y) nm
(nm)
30 20% 3.6 1078 16.21 9.26 (0.16 - 0.21) 470
TTT-Ac 25 20% 3.6 996.4 17.37 10.01 (0.16 - 0.22) 474

20 20% 3.6 935.3 14.52 8.48 (0.16 » 0.23) 470
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Figure S18. EQE-wavelength curves of the TTT-based TADF emitter.



