Local Environment Rigidity and the Evolution of Optical Properties in the Green-Emitting Phosphor Ba_{1-x}Sr_xScO₂F:Eu²⁺

Supporting Information

Shruti Hariyani^{1,+}, Mahdi Amachraa^{2,+}, Mariam Khan¹, Shyue Ping Ong³, and Jakoah Brgoch¹*

Affiliations

¹Department of Chemistry, University of Houston, Houston, Texas 77204, United States ²Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093-0448, United States

³Department of NanoEngineering, University of California San Diego, La Jolla, California 92093-0448, United States

⁺ These authors contributed equally to this work

Figure S1. Le Bail refinements of $(Ba_{1-x}Sr_x)_{0.98}Eu_{0.02}ScO_2F$ (x = 0.075, 0.15, 0.25, 0.33, 0.40) show that the lattice parameters decrease following Vegard's law.

Figure S2. The recovered DFT ordered phases of BaScO₂F of *P4*₂/*mmc* and *P4*/*mmm* space groups.

Figure S3. Electronic projected density of states for $Ba_{1-x}Sr_xScO_2F$ at x = (a) 0 ($E_g = 3.58 \text{ eV}$), (b) 0.09375 ($E_g = 3.57 \text{ eV}$), (c) 0.15625 ($E_g = 3.54 \text{ eV}$), and (d) 0.25 ($E_g = 3.60 \text{ eV}$). The conduction band minimum (CBM) is observed to have a high Sc-*d* orbital character.

Figure S4. The dopant formation energy (D.F.E) of Eu_{Sr} (red) and Eu_{Ba} (blue) substitutions in $Ba_{1-x}Sr_xScO_2F$ (x = 0, 0.09375, 0.15625, 0.25, 0.3125) expressed in meV per atom.

Figure S5. (a) Photoluminescent decay curves of $(Ba_{1-x}Sr_x)_{0.98}Eu_{0.02}ScO_2F$ (x = 0.075, 0.15, 0.25, 0.33, 0.40) fit to a bi-exponential function and (b) the resulting lifetimes.

Table	S1. Refined	atomic posit	tions, therma	l parameter	s, and occu	pancies of
Ba _{0.566(2}	$Sr_{0.433(8)}ScO_2F$					
Atom	Wyck. Pos.	X	У	Z.	U_{iso} (Å ²)	occ.
Ba	1b	1/2	1⁄2	1/2	0.0076(3)	0.566(2)
Sr	1b	1/2	1/2	1/2	0.0076(2)	0.433(8)
Sc	1a	0	0	0	0.0075(2)	1
0	3 <i>d</i>	1/2	0	0	0.0250(9)	0.667
F	3 <i>d</i>	1⁄2	0	0	0.0250(9)	0.333

Table S2. Calculated lattice parameters and phase stability (E_{hull}) of BaScO₂F for two lowest energy O/F configurations.

Phase	P4 ₂ /mmc	P4/mmm
a (Å)	4.214	4.206
b (Å)	4.214	4.206
c (Å)	8.386	4.215
α (°)	90.0	90.0
β (°)	90.0	90.0
γ (°)	90.0	90.0
$E_{\rm hull}$ (meV/atom)	93	98

Table S3. The computed Eu^{2+} average bond length (l_{avg}) in Å.

Ba _{1-x} Sr _x ScO ₂ F:Eu ²⁺	$l_{\rm avg}({ m \AA})$
x = 0	2.78
x = 0.09375	2.71
x = 0.15625	2.66
x = 0.25	2.65
x = 0.3125	2.59