Supporting Information

1,4-Bis(trifluoromethyl)benzene as a New Acceptor for the Design and Synthesis of Emitters Exhibiting Blue Thermally Activated Delayed Fluorescence

Levani Skhirtladze¹, Karolis Lietonas¹, Audrius Bucinskas¹, Dmytro Volyniuk¹, Malek Mahmoudi¹, Omar Mukbaniani², Kai Lin Woon^{***3}, Azhar Ariffin^{**1,4}, Juozas V. Grazulevicius^{1*}

¹Department of Polymer Chemistry and Technology, Faculty of Chemical Technology Kaunas University of Technology, Lithuania ²Department of Chemistry, Faculty of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia. ³Low Dimensional Material Research Centre, Department of Physics, University Malaya, Kuala Lumpur, Malaysia ⁴Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia

*Corresponding author

Juozas V. Grazulevivius: Department of Polymer Chemistry and Technology, Faculty of Chemical Technology Kaunas University of Technology, Lithuania, Email: <u>juozas.grazulevicius@ktu.lt</u>

Kai Lin Woon: Low Dimensional Material Research Centre, Department of Physics, University Malaya, Kuala Lumpur, Malaysia, Email: <u>ph7klw76@um.edu.my</u>

Azhar Ariffin: Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia, Email: <u>azhar70@um.edu.my</u>

Table of Contents

1.	Instrumentations	2
2.	General procedure for the synthesis of target derivatives	5
3.	Cyclic voltammograms of 2PO-2CF3Ph, 2PS-2CF3Ph and 2AC-2CF3Ph	7
4.	Computational simulation data	9
5.	Phosphorescence spectra for PO-Ph, PS-Ph and AC-Ph	10
6.	The laser energy dependence of the delayed emission for 2Ac-2CF3Ph in SimCP2.	14
7.	Optimized Molecular structure data for 2PO-2CF3Ph using wPBEh	15
8.	Optimized Molecular structure data for 2PS-2CF3Ph using wPBEh	18
9.	Optimized Molecular structure data for 2AC-2CF3Ph using wPBEh	20
10.	Optimized Molecular structure data for 2PO-2CF3Ph using wPBEh	20
11.	Characterisations of 2PS-2CF ₃ Ph by 1H, 13C-NMR spectroscopy	21
12.	Characterisations of 2AC-2CF ₃ Ph by 1H, 13C-NMR spectroscopy	22
13.	Characterisations of 2PO-2CF ₃ Ph, 2PS-2CF ₃ Ph, 2AC-2CF ₃ Ph by mass spectroscopy	22
14.	Characterisations of 2PO-2CF3Ph, 2PS-2CF3Ph, 2AC-2CF3Ph by DSC	25
15.	Characterisations of 2PO-2CF3Ph, 2PS-2CF3Ph, 2AC-2CF3Ph by TGA	26
16.	References	27

1. Instrumentations

¹H NMR and ¹³C NMR spectra were obtained of the solutions in deuterated chloroform (CDCl₃-d6) with a 400 MHz Bruker Avance III spectrometer. The data are given as chemical shifts in δ (ppm) and tetramethylsilane was used as internal standard. Mass spectra were obtained on a Waters ZQ 2000 mass spectrometer using ES+ ionization method. Cyclic voltammetry (CV) measurements were carried out using Autolab Potentiate PGSTAT20 in a three-electrode cell using the platinum rod as a counter electrode, glassy carbon as the working electrode and Ag/AgNO₃ as the reference electrode. The experiments were carried out in dry dichloromethane solution containing 0.1 M tetrabutylammonium perchlorate as an electrolyte at room temperature under argon atmosphere at a scan rate of 50 mV/s. The measurements were calibrated using the internal standard ferrocene/ferrocenium (Fc/Fc+). Steady-state photophysical characterization was performed by using the samples prepared by spin-coating from 1 mg/ml toluene solution on quartz substrates. Ultraviolet-visible (UV-vis) spectra were measured by a Perkin Elmer Lambda 35 while photoluminescence spectra were recorded by Edinburgh Instruments FLS980 spectrometer. The samples were excited by the Xenon lamp at 330 nm. Time-resolved luminescence spectroscopy measurements were

performed by utilizing a PicoQuant LDH-D-C-375 laser (wavelength 374 nm) as the excitation source. Phosphorescence spectra were taken at 77 K using Edinburgh Instruments μ F2 microsecond lamp as an excitation source with a set delay of 1 ms.

The single crystals for X-ray diffraction analysis of target compounds **2AC-2CF3Ph**, **2PO-2CF3Ph** and **2PS-2CF3Ph** were obtained by slow evaporation technique using THF solutions. The yellow crystal was mounted on the glass stick using glue. The crystallographic analysis was performed employing XtaLAB mini diffractometer (Rigaku) with graphite monochromated Mo K α (λ = 0.71075 Å) X-ray source. The measurements were performed at room temperature.

The experimental procedures and instrumentations are presented in the supporting information.

The crystallographic data for 2AC-2CF3Ph, 2PO-2CF3Ph and 2PS-2CF3Ph structures reported in this paper have been deposited in Cambridge Crystallographic Data Centre with respective CCDC no (2108557, 2101143 and 2108558). The copies of data can be obtained free of charge on application to CCDC. (The Cambridge Structural Database (CSD)- The Cambridge Crystallographic Data Centre (CCDC), (http://www.ccdc.

cam.ac.uk/solutions/csd-system/components/csd/). Calculations and visualization of the structures (Fig. 1) were performed using the OLEX2 [1][,] crystallographic software package except for refinement, which was performed using SHELXL [2]. For 2PS-2CF3Ph molecule solvent mask procedure was used. Anisotropic thermal parameters were assigned to all nonhydrogen atoms. The hydrogen atoms were included in the structure factor calculation at idealized positions by using a riding model and refined isotropically.

The ionization potentials of solid samples were estimated by using electron photoemission spectrometry in air. To get samples for the measurements of ionization potential the spin-

3

coating onto fluorine doped tin oxide coated glass slides as substrates was used. ASBN-D130-CM deep UV deuterium light source, CM110 1/8m monochromator and 6517B Keithley electrometer were used for recording photoelectron emission spectra.

The studied OLEDs were fabricated by step-by-step vacuum deposition of organic and metal layers onto pre-cleaned ITO coated glass substrates under vacuum higher than 2×10^{-6} mBar (Figure S1). ITO-coated glass substrates with a sheet resistance of 15 Ω /sq were pre-patterned getting seven independent devices with area 6 mm². Substrate surface were cleaned by sonicating 10 minutes in pure acetone following by 10 minutes in isopropyl alcohol (IPA) and dried by nitrogen gun. Afterwards substrates had 15 minutes UV Ozone treatment. Density-voltage and luminance-voltage characteristics were recorded utilizing certificated photodiode PH100-Si-HA-D0 together with the PC-Based Power and Energy Monitor 11S-LINK (from STANDA) and Keithley 2400C source meter. Electroluminescence (EL) spectra were taken by the Avantes AvaSpec-2048XL spectrometer. Device efficiencies were calculated using the luminance, current density, and EL spectra.

Computation

Density functional theory (DFT) using range-separated hybrid functional LC-uPBEh was used to obtain the ground state molecular geometry. ut was tuned using the golden ratio algorithm under polarizable continuum model (PCM) with a dielectric constant of 2.38 corresponding to toluene and solvent radius of 3.48Å. The calculation was performed using Terachem 1.93 software [3] and a Graphic Processing Unit server that had 64 GB RAM installed to support eight Tesla K10 graphic cards. Vertical excited states were obtained using Time dependent-DFT/ LC-uPBEh//cc-pVDZ at optimal ut under the same PCM model. For excited quantum molecular dynamics simulations, the initial temperature was set at 550 K with equilibrium temperature of 300 K using Langevin as a thermostat. Langevin was chosen to simulate the

effect of jostling of solvents. The QMDs were carried out with 1 femtosecond (fs) time step with 10000 steps. The solvent radius was set to be 3.48 Å and dielectric constant of 2.38, the typical values for a toluene. Time-reversible integrator with dissipation was also implemented. The results were visualized using VMD software.

Chemicals

Unless specifically stated otherwise, all the reactions were performed under an argon atmosphere. Starting reagents necessary for the synthesis were purchased from Fluorochem or Sigma-Aldrich and used as received. Organic solvents were dried either by refluxing with calcium hydride or sodium benzophenone ketyl and distilled under inert atmosphere. 1,4dibromo-2,5-bis(trifluoromethyl) (2) was synthesized according to the reported procedure [4].

2. General procedure for the synthesis of target derivatives

A mixture of **2** (1.0 equiv.), secondary aromatic amine, **3** (2.2 equiv.), tris(dibenzylideneacetone)dipalladium(0) ((Pd₂(dba)₃, 0.05 equiv.), X-Phos (0.07 equiv.), sodium-*tert*-butoxide (*t*-BuONa, 2.2 equiv.) and dry toluene (5 ml) were added into a two-neck round bottom flask under argon atmosphere. The reaction mixture was refluxed for 24 hours. After cooling, the reaction mixture was diluted with DCM and the organic phase was washed with water and brine. After being dried over anhydrous Na_2SO_4 and filtered, the solvent was removed, and the crude product was purified by column chromatography using hexane/DCM as eluent.

10,10'-(2,5-bis(trifluoromethyl)-1,4-phenylene)bis(10H-phenoxazine),(**2PO-2CF₃Ph**) was prepared by the general procedure using 1,4-dibromo-2,5-bis(trifluoromethyl) (**2**, 0.50 g, 1.34 mmol), 10*H*-phenoxazine (0.54 g, 2.95 mmol), Pd₂(dba)₃ (0.06 g, 0.07 mmol), X-Phos (0.04 g, 0.09 mmol), *t*-BuONa (0.28 g, 2.96 mmol) and 5 ml of dry toluene. The crude product was washed with ethyl acetate. The target compound was obtained as yellow powder and was further purified by recrystallisation using slow evaporation technique using a mixture of different solvents. Yield: 56 % (0.43 g). Mp = 385.53 °C. Single crystal x-ray crystallography was obtained to confirm the structure. (Figure 1). $C_{32}H_{18}F_6N_2O_2$, calculated m/z: 576.13, observed 576.01.

10,10'-(2,5-bis(trifluoromethyl)-1,4-phenylene)bis(10H-phenothiazine) (2PS-2CF₃Ph) was prepared by the general procedure using compound **2** (0.50 g, 1.34 mmol), 10*H*-phenothiazine (0.59 g, 2.96 mmol), $Pd_2(dba)_3$ (0.06 g, 0.07 mmol), X-Phos (0.04 g, 0.09 mmol), *t*-BuONa (0.28 g, 2.96 mmol) and 5 ml of dry toluene. The crude product was purified by column chromatography using hexane/DCM (3/2) as an eluent. The target compound was obtained as yellow powder. Yield: 45 % (0.40 g). Mp = 321.09 °C; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.15 (s, 2H), 7.07 (dd, *J* = 7.5, 1.3 Hz, 4H), 6.97 – 6.79 (m, 8H), 6.02 (d, *J* = 7.9 Hz,

4H). ¹³C NMR (101 MHz, CDCl₃), δ (ppm): 154.8, 151.8, 143.4, 139.6, 136.7, 127.4, 127.1, 123.6, 121.0, 115.1. C₃₂H₁₈F₆N₂S₂, calculated *m/z*: 608.08, observed: 608.60.

10,10'-(2,5-bis(trifluoromethyl)-1,4-phenylene)bis(9,9-dimethyl-9,10-dihydroacridine)

(2AC-2CF3Ph) was prepared by general procedure using compound 2 (0.50 g, 1.34 mmol), 9,10-dihydro-9,9-dimethylacridine (0.62 g, 2.96 mmol), Pd₂(dba)₃ (0.06 g, 0.07 mmol), X-Phos (0.04 g, 0.09 mmol), *t*-BuONa (0.28 g, 2.96 mmol) and 5 ml of dry toluene. The crude product was purified by column chromatography using hexane/DCM (3/2) as an eluent. The target compound was obtained as yellow powder. Yield: 45 % (0.4 g). Mp = 311.01 °C; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.99 (s, 2H), 7.49 (d, *J* = 7.6 Hz, 4H), 7.06 (t, *J* = 7.6 Hz, 4H), 6.99 (t, *J* = 7.4 Hz, 4H), 6.06 (d, *J* = 8.0 Hz, 4H), 1.90 (s, 6H, CH₃), 1.41 (s, 6H, CH₃).¹³C NMR (101 MHz, CDCl₃), δ (ppm): 140.6, 135.7, 130.5, 126.7, 125.5, 121.9, 113.6, 36.1, 34.5, 27.4. C38H₃₀F6N₂, calculated *m/z*: 628.23, observed: 628.38.

3. Cyclic voltammograms and photoelectron emission spectra of 2PO-2CF3Ph, 2PS-2CF3Ph and 2AC-2CF3Ph

d)

Figure S1: CV curves (a-c) and photoelectron emission spectra (d) of $2PO-2CF_3Ph$, $2PS-2CF_3Ph$, and $2AC-2CF_3Ph$

4. Computational simulation data

Figure S2: the quantum molecular dynamics simulations of vertical excitation of the 4 lowest excited states for (a) 2PS-2CF₃Ph and (b) 2Ac-2CF₃Ph along with their oscillatory strengths and simulated absorption curve by applying gaussian broadening

Figure S3: Dihedral angle between donor and acceptor and their respective oscillatory strengths with the top histogram corresponding to the distribution of dihedral angle and the right axis histogram correspond to the distribution of oscillatory strength for (a) $2Ac-2CF_3Ph$ (b) 2PS-2CF-3-Ph

2Ac-2CF ₃ Ph	2PS-2CF3Ph	2PO-2CF₃Ph
18.6 cm ⁻¹		7.2 cm ⁻¹
	15.2 cm ⁻¹	

Figure S4: The 4th lowest vibrational frequency of the three molecules

5. Prompt and delay decay curve analyses

Figure S5: The low-temperature PL and phosphorescence spectra of the matrix of 2PO-2CF₃Ph[1 wt.%], 2PS-2CF₃Ph[1 wt.%], 2AC-2CF₃Ph[1 wt.%] in Zeonex (a). The low-temperature PL and phosphorescence spectra of MeTHF solutions (10⁻⁵ M) of 2PO-2CF₃Ph, 2PS-2CF₃Ph, 2AC-2CF₃Ph (b). The phosphorescence spectra of the solid solutions (10⁻⁵ M) of PO-Ph, PS-Ph, AC-Ph (together with their molecular structures) in THF at 77K (c). The phosphorescence spectra of 2CF₃Ph (d). The corresponding onsets of emission at 77K are given in eV. The onset wavelengths (λ) were taken from the corresponding spectra (as it schematically shown by the blue lines). The energies were calculated using the empiric formula E=1240/λ [eV].

Figure S6: PL decay of the matrix of (a) 2PO-2CF₃Ph[1 wt.%] (b) 2PS-2CF₃Ph[1 wt.%] (c) 2AC-2CF₃Ph[1 wt.%] in Zeonex at different temperatures and the corresponding exponential fit curves at each temperature.

Т, К	300	250	200	150	100	77
A ₁	1.12	1.10	1.09	1.13	0.99	1.12
τ ₁ , ns	21.46	21.53	22.37	25.83	19.04	26.76
A ₂	0.01	0.01	0.00	0.00	0.00	0.00
τ ₂ , ns	925.83	1568.44	2794.29	7500.69	16627.27	24179.45
IPL	597893	792245	892771	600526	470799	372905
Iзоок/I#к	1.00	0.75	0.67	1.00	1.27	1.60
PLQY adjusted %	4.64	6.15	6.93	4.66	3.66	2.90
Area	33.3	32.5	34	44.5	40.9	57.8
Area PF	24.06	23.67	24.35	29.22	18.94	29.99
Area DF	9.22	8.83	9.64	15.30	21.95	27.81
PF %	72.29	72.83	71.64	65.63	46.33	51.89
DF %	27.71	27.17	28.36	34.37	53.67	48.11
DF/PF ratio	0.38	0.37	0.40	0.52	1.16	0.93
ФРF, %	3.36	4.48	4.97	3.06	1.69	1.50
ФDF, %	1.29	1.67	1.97	1.60	1.96	1.39
kPF, s⁻¹	1.56E+06	2.08E+06	2.22E+06	1.19E+06	8.90E+05	5.62E+05
kDF, s⁻¹	1.39E+04	1.07E+04	7.04E+03	2.14E+03	1.18E+03	5.76E+02
kISC, s⁻¹	4.33E+05	5.66E+05	6.30E+05	4.07E+05	4.78E+05	2.70E+05
kRISC, s ^{−1}	1.92E+04	1.46E+04	9.82E+03	3.26E+03	2.55E+03	1.11E+03
ΦISC	0.97	0.96	0.95	0.97	0.98	0.98
ΦRISC	0.29	0.28	0.30	0.35	0.55	0.49
τPFrad, ns	639.10	480.30	450.30	843.70	1124.00	1780.40
τPFnrad, ns	22.20	22.50	23.50	26.60	19.40	27.20
kPFrad, s ⁻¹	1.56E+06	2.08E+06	2.22E+06	1.19E+06	8.90E+05	5.62E+05
kPFnrad, s ^{−1}	4.50E+07	4.44E+07	4.25E+07	3.75E+07	5.16E+07	3.68E+07
kTnrad, s ^{−1}	4.78E+04	3.68E+04	2.31E+04	5.93E+03	2.12E+03	1.16E+03

Table S1: Data of PL decay exponential fit curves of 2PO-2CF₃Ph[1 wt.%] in Zeonex at differenttemperatures and calculated values of fluorescence kinetics.

Table S2: Data of PL decay exponential fit curves of 2PS-2CF₃Ph[1 wt.%] in Zeonex at differenttemperatures and calculated values of fluorescence kinetics.

Т, К	300	250	200	150	100	77
A ₁	1.08	1.08	1.11	1.12	1.12	1.09
τ ₁ , ns	18.16	19.67	21.94	24.23	24.30	23.79
A ₂	0.01	0.01	0.00	0.00	0.00	0.00
τ ₂ , ns	1406.37	2302.01	4654.99	10693.29	23822.02	33204.94
I PL	671900	719387	705600	544949	522738	425275
І зоок/І#к	1.00	0.93	0.95	1.23	1.29	1.58

PLQY adjusted	5.24	5.61	5.50	4.25	4.07	3.32
Area	91.7	75	55.4	42.4	35.5	32.4
Area PF	25.87	27.10	27.19	24.26	21.24	19.54
Area DF	65.87	47.92	28.18	18.12	14.24	12.90
PF %	28.20	36.13	49.11	57.24	59.87	60.23
DF %	71.80	63.87	50.89	42.76	40.13	39.77
DF/PF ratio	2.55	1.77	1.04	0.75	0.67	0.66
ФР F, %	3.15	3.36	3.15	2.09	1.47	0.93
ΦDF, %	2.08	2.25	2.35	2.16	2.60	2.38
kPF, s⁻¹	1.74E+06	1.71E+06	1.43E+06	8.61E+05	6.06E+05	3.93E+05
kDF, s⁻¹	1.48E+04	9.78E+03	5.05E+03	2.02E+03	1.09E+03	7.17E+02
kISC, s⁻¹	6.91E+05	6.85E+05	6.14E+05	4.38E+05	3.87E+05	2.82E+05
kRISC, s ^{−1}	2.46E+04	1.63E+04	8.83E+03	4.12E+03	3.02E+03	2.54E+03
ΦΙSC	0.97	0.97	0.97	0.98	0.99	0.99
ΦRISC	0.41	0.42	0.44	0.52	0.65	0.72
τPFrad, ns	575.50	585.80	696.90	1161.20	1650.50	2545.20
τPFnrad, ns	18.70	20.30	22.70	24.70	24.70	24.00
kPFrad, s ⁻¹	1.74E+06	1.71E+06	1.43E+06	8.61E+05	6.06E+05	3.93E+05
kPFnrad, s ^{−1}	5.33E+07	4.91E+07	4.41E+07	4.04E+07	4.06E+07	4.16E+07
kTnrad, s ^{−1}	3.53E+04	2.30E+04	1.12E+04	3.80E+03	1.64E+03	9.65E+02

Table S3:	Data of PL decay exponential fit curves of 2Ac-2CF ₃ Ph[1 wt.%] in Zeonex at differen	۱t
	temperatures and calculated values of fluorescence kinetics.	

Т, К	300	250	200	150	100	77
A 1	0.97	1.08	1.08	1.06	1.07	1.07
τ ₁ , ns	35.40	33.31	34.38	36.47	38.53	39.81
A ₂	0.05	0.03	0.02	0.01	0.01	0.01
τ ₂ , ns	2560.14	2782.56	3864.05	6747.25	9510.85	9477.75
IPL	607348	515701	482359	451700	461080	451700
Ізоок/І#к	1.00	1.18	1.26	1.34	1.32	1.34
PLQY adjusted	38.49	32.68	30.57	28.63	29.22	28.63
Area	158	128	120	117	109	99.6
Area PF	34.20	35.98	37.07	38.66	41.17	42.48
Area DF	124.05	92.07	82.62	77.92	67.71	57.15
PF %	21.61	28.10	30.97	33.16	37.81	42.64
DF %	78.39	71.90	69.03	66.84	62.19	57.36
DF/PF ratio	3.63	2.56	2.23	2.02	1.64	1.35
ФРF, %	8.32	9.18	9.47	9.49	11.05	12.20
ФDF, %	30.17	23.50	21.10	19.13	18.17	16.42

kPF, s⁻¹	2.35E+06	2.76E+06	2.75E+06	2.60E+06	2.87E+06	3.07E+06
kDF, s⁻¹	1.18E+05	8.44E+04	5.46E+04	2.84E+04	1.91E+04	1.73E+04
kISC, s⁻¹	1.84E+06	1.98E+06	1.90E+06	1.74E+06	1.78E+06	1.76E+06
kRISC, s ^{−1}	5.45E+05	3.01E+05	1.76E+05	8.55E+04	5.05E+04	4.06E+04
ΦISC	0.92	0.91	0.91	0.91	0.89	0.88
ΦRISC	0.86	0.79	0.76	0.74	0.70	0.65
τPFrad, ns	425.60	362.70	363.10	384.20	348.70	326.20
τPFnrad, ns	38.60	36.70	38.00	40.30	43.30	45.30
kPFrad, s ⁻¹	2.35E+06	2.76E+06	2.75E+06	2.60E+06	2.87E+06	3.07E+06
kPFnrad, s ⁻¹	2.59E+07	2.73E+07	2.63E+07	2.48E+07	2.31E+07	2.21E+07
kTnrad, s ^{−1}	9.25E+04	7.91E+04	5.49E+04	3.03E+04	2.17E+04	2.16E+04

6. The laser energy dependence of the delayed emission for 2Ac-2CF₃Ph in SimCP2.

Figure S7: Non-normalized (a) and normalized (b) PL spectra recorded with the delay of 1 μs after excitation under vacuum and at the different optical excitation powers and the corresponding the laser energy dependence of the integrated area the delayed emission band (c) for **2Ac-2CF₃Ph[10 wt.%]** in **SimCP2**.

a)

Figure S8. PL spectra of the films of the molecular mixtures of 2AC-2CF₃Ph and SimCP2 containing 5, 10 and 15 wt. % of 2AC-2CF₃Ph. (a); PL spectra of the film of 10 wt. % molecular dispersion of 2AC-2CF₃Ph in SimCP2 recorded in air and in vacuum (b); the low-temperature and room-temperature PL spectra (c) and PL decay curves (d) of the films of 10 wt. % molecular dispersion of 2AC-2CF₃Ph in SimCP2 recorded at 77K. PL spectra of the film 10 wt. % molecular dispersion of 2AC-2CF₃Ph in SimCP2 recorded at 77K. PL spectra of the film 10 wt. % molecular dispersion of 2AC-2CF₃Ph in SimCP2 recorded at the different delay time after excitation (e).

7. Optimized Molecular structure data for 2PO-2CF₃Ph using wPBEh

Optimized Molecular structure for 2PO-2CF₃Ph using wPBEh functional at cc-pvdz with w of 0.04938

С	3.6611552450	0.7162790913	0.1460287947
С	3.6601822868	-0.6692938859	0.2658194205
С	2.4569041004	-1.3673732893	0.1433820900
С	1.2719666011	-0.6859533822	-0.0978742988
С	1.2586672760	0.7139779912	-0.2186275250
С	2.4681423187	1.4021656395	-0.0935750681
0	0.1337888160	-1.4447413484	-0.2251519308
С	-1.0689983821	-0.7864372030	-0.3103643068
С	-1.1530663502	0.6103673997	-0.4385115422
Ν	0.0359829548	1.3679142150	-0.4770678980
С	-2.2157853109	-1.5678566052	-0.2807920333

С	-3.4761935608	-0.9755682948	-0.3843502046
С	-3.5731638273	0.4056090951	-0.5153452332
С	-2.4191351796	1.1921524910	-0.5415942944
С	-0.0418374250	2.7765980740	-0.2889109108
С	-0.1859105289	3.2953957609	0.9990672899
С	-0.2656062201	4.6704909554	1.2132124078
С	-0.1997770885	5.5496154456	0.1226056104
С	-0.0549317181	5.0309067389	-1.1653235767
С	0.0245739299	3.6557692002	-1.3794483475
С	0.1783964401	3.1235481417	-2.7854092911
С	-0.4184519397	5.2026724615	2.6193010787
Ν	-0.2769562941	6.9582529664	0.3111929841
С	-1.4993245009	7.6126610828	0.0523188113
С	-1.5124915969	9.0127767773	-0.0660364644
0	-0.3743134212	9.7711152657	0.0638792996
С	0.8285016049	9.1123174734	0.1454489602
С	0.9123779114	7.7153273318	0.2715657439
С	-2.7088128388	6.9247938721	-0.0742759415
С	-3.9015783827	7.6111099871	-0.3137428112
С	-3.9004218280	8.9968365977	-0.4315683682
С	-2.6971525391	9.6946519531	-0.3075039594
С	1.9755544768	9.8933289476	0.1150318294
С	3.2359276862	9.3004386855	0.2160223001
С	3.3326072038	7.9190953935	0.3453557009
С	2.1783522182	7.1329458898	0.3722475511
F	0.6061771037	6.0012616631	2.9601088692
F	-1.5508794342	5.9105571145	2.7607598485
F	-0.4594182110	4.2017077101	3.5183042769
F	0.2203995044	4.1244815652	-3.6843812682
F	1.3106749264	2.4152986627	-2.9260055261
F	-0.8462250500	2.3252550770	-3.1270227083
Н	4.5922608330	1.2801470188	0.2349559007
Н	4.5877909088	-1.2141146503	0.4529068251
Н	2.4109757651	-2.4548253522	0.2317920105
Н	2.4783749198	2.4882273773	-0.1993776206
Н	-2.0944254496	-2.6480263715	-0.1759636707
Н	-4.3726629250	-1.5986011051	-0.3627901757
Н	-4.5493995735	0.8874634340	-0.6024202707
Н	-2.5021184263	2.2739978981	-0.6582087226
Н	-0.2358633039	2.6077259725	1.8442868341
Н	-0.0054069654	5.7186423528	-2.0105338125
Н	-2.7192265952	5.8385474886	0.0296863157
Н	-4.8326792941	7.0474740008	-0.4041074730
Н	-4.8278925747	9.5419308208	-0.6185632015
Н	-2.6511490746	10.7822305722	-0.3942845348
Н	1.8544528648	10.9736885769	0.0118496595
Н	4.1326053356	9.9231495144	0.1939327596
Н	4.3088056853	7.4368308127	0.4305793787
Н	2.2611351207	6.0509513380	0.4875601715

8. Optimized Molecular structure data for 2PS-2CF₃Ph using wPBEh

Optimized Molecular structure for **2PS-2CF₃Ph** using wPBEh functional at cc-pvdz with w of 0.04938

С	3.1174367531	0.8934415274	2.1120577267
Ċ	3.3155418549	-0.4795246773	1.9989562157
c	2 4028115471	-1 2399323812	1 2687185697
c	1 3164114145	-0 6328795686	0 6379866693
c	1 0914245157	0 7490634427	0 7746919826
c	2 0080062152	1 5006736/28	1 5205/60890
c	0 2807285820	-1 5065605701	-0 1301600880
c c	1 2476220212	-1.5505005751 0 7527010261	0.4000000
Ċ	1 2605201660	0.6275154440	0.1793306037
	-1.2005501000	0.03/3134440	0.02//009425
	-0.0338334030	1.3424105811	0.150/512015
C	-2.4421019524	-1.40/0205054	-0.2770290994
C	-3.0095503723	-0.80/9256801	-0.2248921553
C	-3.6904620684	0.5/2/610301	-0.0505365964
C	-2.5004017824	1.28/4/44420	0.0893814534
C	-0.0/24060801	2./625346811	0.03/0565095
C	-0.4560228144	3.55/3626536	1.1200935001
C	-0.5017482988	4.9468566536	1.0143856097
С	-0.1577223551	5.5649552179	-0.1966381619
С	0.2256998618	4.7701987132	-1.2798689770
С	0.2693704892	3.3804672733	-1.1747719936
С	0.6980628789	2.5571148204	-2.3677563349
С	-0.9363220013	5.7692659987	2.2061290885
Ν	-0.1925199651	6.9852841195	-0.3088470433
С	-1.3167176446	7.5803537890	-0.9368893275
С	-1.5432469363	8.9616658429	-0.7963164074
S	-0.5185230024	9.9230454315	0.2849694683
С	1.0191943903	9.0805749950	0.0253396184
С	1.0321712057	7.6892153815	-0.1813152801
С	-2.2295529692	6.8310173726	-1.6907617936
С	-3.3359797449	7.4392886337	-2.2846808807
С	-3.5373603771	8.8112912002	-2.1648411600
С	-2.6286257767	9.5699016737	-1.4276948340
С	2.2136811155	9.7945840407	0.1235282135
С	3.4410383381	9.1343943235	0.0740332662
С	3.4619228115	7.7532454706	-0.0972406672
С	2.2718769915	7.0385705134	-0.2382720898
F	0.0001434827	6.6581939244	2.5759591299
F	-2.0682562406	6.4491133776	1.9535297519
F	-1.1773000038	4.9865631113	3.2781525760
F	0.9385107911	3.3390478109	-3,4404784254
F	1,8284527679	1.8734614870	-2.1184012894
F	-0.2425019475	1,6714101768	-2,7347928317
н	3 8228216402	1 5093141964	2 6748462960
н	1753358681	-0 9602372620	2.07 10402000
н	2 5380120077	-2 3189636552	1 1602200500
н	1 871572792/	2.5105050552	1 6298572010
н	-2 397230/07/	-2.5770405501	-0 /188630011
н	-2.5572504574	_1 37250/0/40	-0 333200032211
		T. J/ ZJ040404	0.0000000000000000000000000000000000000

Н	-4.6404720917	1.1106852793	-0.0111581285
Н	-2.5429826617	2.3677566337	0.2319514152
Н	-0.7257159190	3.0767339704	2.0615347399
Н	0.4959441869	5.2511793857	-2.2210706046
Н	-2.0899189617	5.7554437388	-1.8044684709
Н	-4.0371079909	6.8251049873	-2.8546744705
Н	-4.3960902211	9.2927549008	-2.6374502525
Н	-2.7661295977	10.6482159770	-1.3151403795
Н	2.1687625205	10.8775075104	0.2636765162
Н	4.3706312336	9.6990575238	0.1718541294
Н	4.4119450606	7.2149234594	-0.1334465764
Н	2.3142500169	5.9579538446	-0.3782276975

9. Optimized Molecular structure data for 2AC-2CF₃Ph using wPBEh

Optimized Molecular structure for **2Ac-2CF₃Ph** using wPBEh functional at cc-pvdz with w of 0.04250

С	3.3338907624	1.0974073107	2.0405674255
С	3.4589256692	-0.2811577367	2.1842053277
С	2.5008647189	-1.1144452243	1.6074710122
С	1.4096524850	-0.6104645784	0.8940642250
С	1.2681140687	0.7900957620	0.8043435735
С	2.2436145723	1.6316667551	1.3595020599
С	0.4486913061	-1.5044029476	0.1159073239
С	-0.9352795942	-0.8608148745	0.1342684137
С	-1.0391047197	0.5436496275	0.0550430732
Ν	0.1351502576	1.3222819086	0.1502705434
С	-2.1169366507	-1.6069780124	0.1120450586
С	-3.3690964309	-1.0095544980	-0.0307511508
С	-3.4498407304	0.3733069884	-0.1648508984
С	-2.2937697436	1.1471387376	-0.1176429334
С	0.0156550579	2.7386576469	0.0469981152
С	-0.4125247254	3.4890130648	1.1444262811
С	-0.5410165041	4.8750973787	1.0615123001
С	-0.2380292722	5.5329808814	-0.1387752097
С	0.1931525645	4.7831710551	-1.2352924960
С	0.3213192947	3.3977702856	-1.1525799231
С	0.7754960585	2.6172815154	-2.3630454265
С	-0.9944424116	5.6581615358	2.2703255458
Ν	-0.3679080064	6.9484132077	-0.2515310415
С	-1.4984059181	7.4570895365	-0.9291088261
С	-1.6308264788	8.8517696865	-1.0918420371
С	-0.6713911031	9.7784797525	-0.3521125667
С	0.7090949509	9.1295722281	-0.3231899635
С	0.8057890294	7.7303818647	-0.1739434230
С	-2.4830106773	6.5953153003	-1.4362109093
С	-3.5684498219	7.1007986170	-2.1460326798
С	-3.6797349669	8.4700672734	-2.3681686956
С	-2.7158042834	9.3252581832	-1.8350703101
С	1.8930957784	9.8724057981	-0.3183690797
С	3.1404295505	9.2793906692	-0.1252579560
С	3.2134064990	7.9047089925	0.0796427936
С	2.0555478270	7.1329775859	0.0500247249

F	-0.0652423415	6.5520663846	2.6599851400
F	-2.1312780615	6.3392462061	2.0302994793
F	-1.2309586530	4.8539228019	3.3235843208
F	1.0089851557	3.4232509162	-3.4155129356
F	1.9144870993	1.9390348144	-2.1252051816
F	-0.1517246029	1.7214905900	-2.7533143764
С	-0.6382514789	11.1802028942	-0.9647717815
С	-1.1662636511	9.8975734161	1.1104575088
С	0.9316885369	-1.5546955060	-1.3545359729
С	0.4258370339	-2.9343410595	0.6608963353
Н	4.0806435232	1.7716133486	2.4674000594
Н	4.3031823257	-0.7115690070	2.7275402647
Н	2.6211250324	-2.1948304398	1.7018531453
Н	2.1516058723	2.7141055111	1.2631158335
Н	-2.0612654065	-2.6940845494	0.1881018244
Н	-4.2705451161	-1.6260741590	-0.0527898663
Н	-4.4174126670	0.8640231598	-0.2968507596
Н	-2.3709921533	2.2310160905	-0.2113499250
Н	-0.6464506884	2.9739130343	2.0770837374
Н	0.4258024892	5.2984577868	-2.1681546963
Н	-2.4026417694	5.5192909833	-1.2779496557
Н	-4.3225858949	6.4107434301	-2.5326822263
Н	-4.5185573991	8.8771953882	-2.9371916160
Н	-2.8260028718	10.3998121188	-1.9892712912
Н	1.8425496460	10.9544133917	-0.4504242444
Н	4.0437427732	9.8935071264	-0.1187007066
Н	4.1763310542	7.4184999898	0.2550413225
Н	2.1267106815	6.0551205409	0.2007588565
Н	-0.2960222076	11.1647720876	-2.0116809999
Н	0.0261047156	11.8416942070	-0.3892779933
Н	-1.6352333309	11.6434669230	-0.9278772399
Н	-1.2171560573	8.9136320593	1.5987215066
Н	-2.1743271268	10.3444786365	1.1351810239
Н	-0.4811387269	10.5360214669	1.6930758260
Н	0.9737347982	-0.5517296452	-1.8024174095
Н	0.2452566033	-2.1715220162	-1.9585895739
Н	1.9413693613	-1.9954842076	-1.4054400942
Н	0.0935132498	-2.9706664308	1.7103327873
Н	1.4235265639	-3.3926323453	0.5919375628
Н	-0.2418542017	-3.5693000034	0.0598569277

10. Optimized Molecular structure data for 2PO-2CF₃Ph using wPBEh with functional at ccpydz

Molecular structure for 2PO-2CF3Ph using wPBEh functional at cc-pvdz with w of 0.04938 that display high oscillatory strength С 2.4397960191 -0.2313568021 0.6707539429 С 2.6272443004 -1.5778809150 0.3571516742 С 2.9372361126 -2.5458946083 1.3426044084 С 3.0428687654 -2.1303281118 2.6685736344 С 2.8942160583 -0.7460355930 2.9863279713 С 2.5417845936 0.1938023100 1.9886490789 0 3.1882432534 -3.0855622573 3.6306324976 С 3.1031288528 -2.7478155007 4.9064127348 С 3.0942982942 -1.3217780129 5.2844010649 Ν 3.1748532496 -0.3092241037 4.3334406873 С 3.1937303540 -3.7224235880 5.8983164476 С 3.1779747638 -3.3386876055 7.2296402500 С -2.0329312039 7.6172280626 3.2134031322 С 3.1700273092 -1.08687612416.6236007744 С 3.3000254186 1.0344513400 4.8231586821 С 4.6194260724 1.4822227700 5.2932621410 С 4.8832869445 2.7783838916 5.6597449401 С 3.8110232484 3.7442314171 5.5194672386 С 3.3357332508 5.1049051443 2.5372028763 С 2.2998666819 2.0108634891 4.7023096290 С 0.8513284593 1.5976065107 4.4468033087 С 6.3278545008 3.2321191979 5.9204586155 Ν 3.9832937109 5.1110829416 5.7810606597 С 4.0656826563 5.5499926543 7.0968987659 С 4.5782918252 6.8362629413 7.2647689024 0 4.9283121514 7.6591320462 6.2304223619 С 4.9320152576 7.1508556340 5.0145237028 С 4.5079110306 4.7171891487 5.8762874618 С 3.6783703834 4.8773583923 8.2799506927 С 3.7193152851 5.4150980075 9.5431887438 С 4.1054628079 6.7007842038 9.6468758173 С 8.5291465397 4.5662900958 7.4333618178 С 5.4679928364 7.9475390024 3.9621868343 С 5.5282116524 7.5453999860 2.5928715468 С 5.2029344755 6.2228549482 2.3421632060 С 4.7088514831 5.4580277014 3.3931884435 F 6.7135473292 3.9616175442 4.8090958559 F 6.4175667743 4.0294026211 6.9981824870 F 7.1000189391 2.1345156062 6.1090173528 F 0.0999115930 2.2851093738 5.3003185813 F 0.3941353353 1.8858639917 3.2543568623 F 0.7166376397 0.2341797867 4.6557398465 Н 2.1928085038 0.4950534008 -0.2194205567 Н 2.5346579179 -1.9391704716 -0.6417510730 Н 2.9185278390 -3.6501975462 1.1866876442 Н 2.3245793601 1.2348783206 2.3337298308 Н 3.1866163858 -4.7257065851 5.6010575429 Н 3.3056563663 -4.1272385071 7.9677733965 Н 3.1435957593 -1.6393943956 8.6373989086

Н	3.2171625519	-0.0421269812	6.9655122972
Н	5.4729392213	0.7060196302	5.2732666058
Н	1.7141858621	4.0845878302	5.1207293825
Н	3.1568081254	3.8694298935	8.1504493312
Н	3.2393304085	4.9551348899	10.3812396098
Н	3.9429063625	7.2891457263	10.4862532879
Н	4.9234590389	8.4458777858	8.8312385066
Н	5.7509640012	8.9883273714	4.1901187709
Н	6.1202596668	8.0886603780	1.8585798014
Н	5.3910494918	5.7114144689	1.3999095502
Н	4.4811063823	4.3829867646	3.2846914845

11. Characterisations of **2PS-2CF₃Ph** by 1H, 13C-NMR spectroscopy

Figure S9: 1H-NMR for 2PS-2CF₃-Ph

Figure S10: 13C-NMR for 2PS-2CF₃-Ph

12. Characterisations of 2AC-2CF₃Ph by 1H, 13C-NMR spectroscopy

Figure S12: 13C-NMR 2AC-2CF₃Ph

13. Characterisations of 2PO-2CF₃Ph, 2PS-2CF₃Ph, 2AC-2CF₃Ph by mass spectroscopy

Figure S13: Mass spectrum for 2PO-2CF₃Ph

Figure S14: Mass spectrum for 2PS-2CF₃Ph

Figure S15: Mass spectrum for 2AC-2CF3Ph

14. Characterisations of 2PO-2CF₃Ph, 2PS-2CF₃Ph, 2AC-2CF₃Ph by DSC

Figure S16: DSC curve for compound 2PO-2CF₃Ph

Figure S17: DSC curve for compound 2PS-2CF₃Ph

Figure S18: DSC curve for compound $2AC-2CF_3Ph$

15. Characterisations of 2PO-2CF3Ph, 2PS-2CF3Ph, 2AC-2CF3Ph by TGA

Figure S19: TGA curve for compound 2PO-2CF3Ph

Figure S21: TGA curve for compound 2AC-2CF₃Ph

17. References

- 1 J. Gibson and T. J. Penfold, *Phys. Chem. Chem. Phys.*, 2017, **19**, 8428–8434.
- 2 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2008, 64, 112–122.
- T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J. M. Grenéche, B. Le Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J. C. Lavalley, M. Daturi and G. Férey, *J. Am. Chem. Soc.*, 2010, 132(3), 1127–1136.
- 4 I. S. Ufimtsev and T. J. Martinez, J. Chem. Theory Comput., 2009, 5, 2619–2628.