Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Simultaneous microwave-assisted reduction and B/N co-doping of graphene oxide for selective recognition of VOCs

Joyce B. Matsoso^{1,2*}, Nikolas Antonatos¹, Pradip Roy Kumar¹, Cameron Jellett¹, Vlastimil Mazánek¹, Catherine Journet-Gautier², Zdeněk Sofer^{1*}

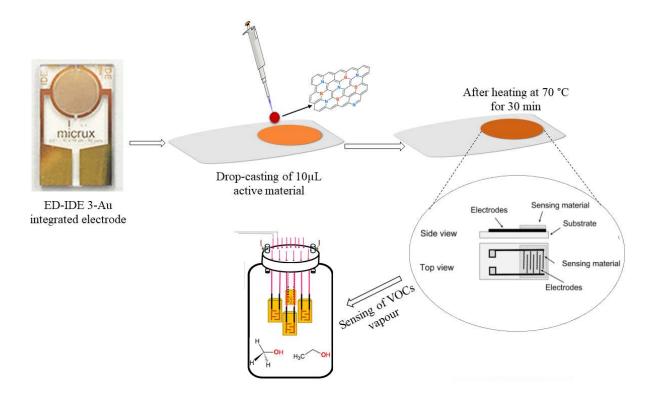
Results:

Concentrations of methanol and ethanol vapours (C) were determined from the amount of acetone and ethanol, added to the analysis chamber through the equation:

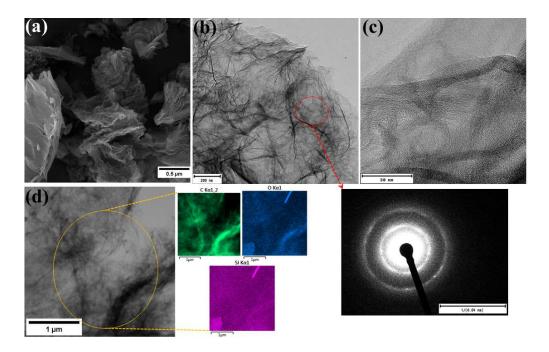
$$C_{ppm} = \frac{2.46V_a\rho}{V_c Mw} 10^7 \dots (S1)$$

where V_a represents the volume (in μ L) of the analyte added to the chamber, V_c is the volume (in μ L) of the analysis chamber, ρ is the density of analyte (in μ mL) and μ m is the molecular weight of analyte in μ mC. The response (μ mC), limit of detection (μ mC) and sensitivity (μ mC) were given by

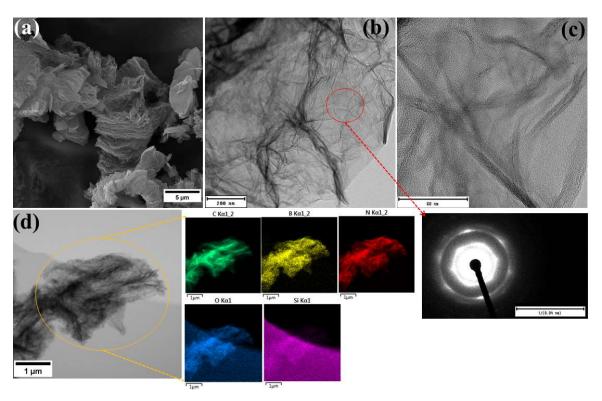
$$\Delta R/R_0 = (R_f - R_0)/R_0 \dots (S2)$$

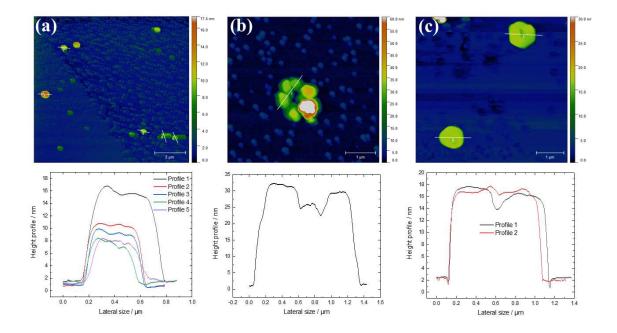

$$LoD = Rb + 3db \dots (S3)$$

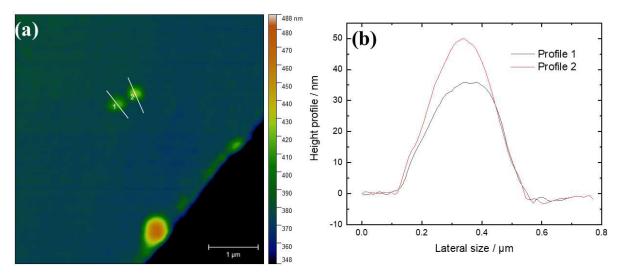
$$S = dResp/dC \dots (S4)$$


where, R_f is the impedance of the sensor when exposed to analyte and R_θ the resistance of the sensor in ambient condition, Rb is the average impedance, db is the standard deviation of the device impedance without analyte, and C is an analyte concentration.

Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic


² Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ-Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex-France


Scheme S1: Sensing device preparation and sensing set-up.


Figure S1: Morphology of the rGO sample based on (a) SEM, (b) low magnification TEM, (c) high magnification TEM with SAED, and (d) TEM elemental mapping.

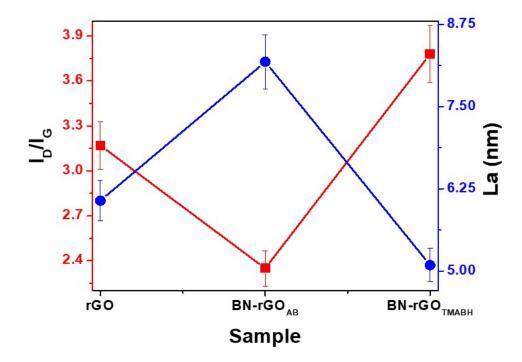
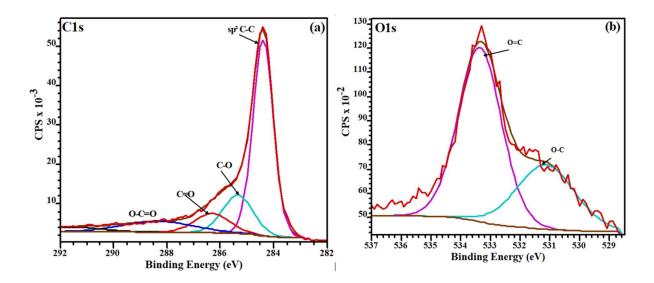
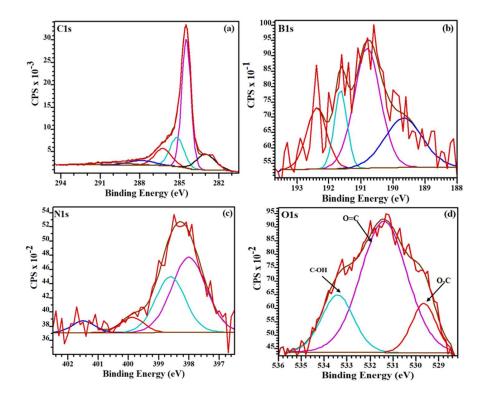
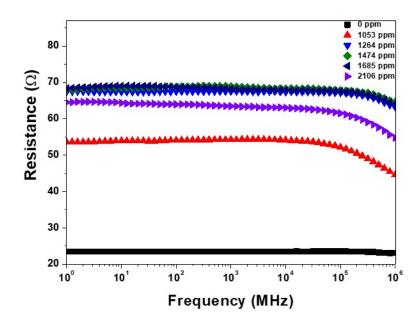

Figure S2: Morphology of the BN-GO_{TMABH} sample based on (a) SEM, (b) low magnification TEM, (c) high magnification TEM with SAED, and (d) TEM elemental mapping.

Figure S3: AFM micrographs of (a) pristine rGO, (b) BN-rGO_{AB}, and (c) BN-GO_{TMABH} samples; corresponding height profiles.

Figure S4: (a) AFM micrographs and (b) corresponding height profiles of the nanosheets on the integrated electrode.

Figure S5: Defect density ratios and crystallite sizes for the pristine and variously co-doped rGO samples.

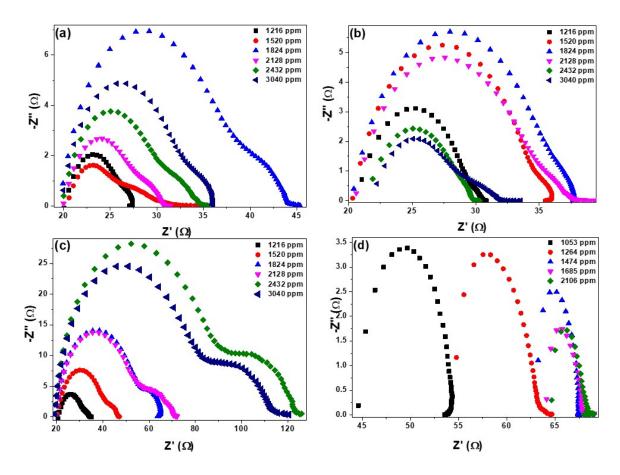

Figure S6: Deconvoluted (a) C1s and (b) O1s spectra of rGO sample.

Figure S7: Deconvoluted (a) C1s, (b) B1s, (c) N1s, and (d) O1s spectra of BN-rGO_{TMABH} sample.

Figure S8: (a) Resistance as a function of frequency at increasing EtOH vapour concentration and (b) Nyquist plot for BN-rGO_{AB} sensor at 1100 ppm EtOH vapour concentration.

Figure S9: Nyquist plots for sensitivity of (a) rGO, (b) BN-rGO_{AB}, and (c) BN-rGO_{TMABH} sensor devices with increasing MeOH vapour concentrations, and (d) for BN-rGO_{AB} to EtOH vapour.

Table S1: Raman parameters for the pristine rGO and doped rGO samples.

Sample	Peak position (cm ⁻¹)		Defect density	La (nm)	$N_{\rm D}/~\times 10^{11}~{\rm cm}^{-2~a}$
	D-band	G-band	ratio (I _D /I _G)		
rGO	1349.8	1584.3	3.17	6.07	9.50
BN-rGO _{AB}	1349.9	1584.3	2.35	8.18	7.04
BN-rGO _{TMABH}	1344.8	1577.9	3.78	5.09	11.3

Defects density, $n_D(nm) = \frac{2.4 \times 10^{22}}{\lambda_{laser}^4} \times I_D/I_G$(S1^a)

<u>Table S2:</u> Textual properties of pristine and doped rGO samples.

Sample	BET surface area (m²/g)	Monolayer Pore volume (cm ³ /g)	Pore vol (cm ³ /g)
rGO	185.8	42.7	0.77
BN-rGO _{AB}	432.6	99.8	1.94
BN-rGO _{TMABH}	325.4	74.8	1.50

<u>Table S3</u>: Atomic compositions of pristine and BN-rGO samples.

	Elements (at. %)					
Samples	C	В	N	О		
rGO	93.02	-	-	6.98		
BN-rGOAB	75.69	7.33	2.61	14.48		
BN-rGO _{TMABH}	84.87	2.94	2.09	10.09		