SUPPLEMENTARY MATERIAL

Theoretical study on the controllable preparation of superhard BC₂N under high pressure

Qi Gao^a, Kun Luo^a*, Feifei Ling^b, Quan Huang^c, Li Zhu^a, Qiaoyi Han^a, Yang Zhang^a, Yufei Gao^a, Julong He^a, and Dongli Yu^a*

^aCenter for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China Email: hiluokun@gmail.com; ydl@ysu.edu.cn.

^bHebei Technology Innovation Center of Phase Change Thermal Management of Data Center, Hebei University of Water Resources and Electric Engineering

^cSchool of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China

Corresponding author

* K. Luo. E-mail: <u>hiluokun@gmail.com;</u>
* D. Yu. E-mail: <u>ydl@ysu.edu.cn</u>

Structure	Symmetry	a (Å)	<i>c</i> (Å)	Atomic Position	
R3m-BC ₂ N	R3m	2.540	25.179	C ₁ :3a (1, -1, -0.054), C ₂ :3a (1, -1, -0.116)	
				C ₃ :3a (0.333, -0.333, -0.033), C ₄ :3a (0.667, -0.667, -0.136)	
				B ₁ :3a (0.333, -0.333, -0.218), B ₂ :3a (0.667, -0.667, 00.302)	
				N ₁ :3a (0.333, -0.333, -0.279), N ₂ :3a (0.667, -0.667, -0.196)	
P2/m-BC ₂ N	P2/m	8.866	4.277	C ₁ :2n (-0.091, 0.5, 0.181), C ₂ :2n (0.086, 0.5, 0.187)	
				C ₃ :2m (0.162, 0, 0.317), C ₄ :2m (-0.165, 1, 0.317)	
				B ₁ :2n (0.590, 0.5, 0.332), B ₂ :2m (0.334, 0, 0.177)	
				N_1 :2n (0.415, 0.5, 0.297), N_2 :2m (0.670, 0, 0.201)	
P2/m-BC ₂ N-2	P2/m	9.061	4.230	C ₁ :2n (0.417, -0.5, 0.395), C ₂ :2m (0.663, 0, 0.141)	
				C ₃ :2m (0.337, 0, 0.488), C ₄ :2n (0.582, 0.5, -0.021)	
				B ₁ :2m (0.834, 0, 0.09), B ₂ :2n (1.092, 0.5, 0.380)	
				N ₁ :2m (1.173, 0, 0.290), N ₂ :2n (0.916, 0.5, 0.252)	
R-3 m -BC ₂ N	<i>R</i> -3 <i>m</i>	2.547	25.309	C ₁ :6c (0.333, -0.333, -0.303), C ₂ :6c (1, -1, -0.282)	
				B_1 :6c (1, -1, -0.219), N_1 :6c (0.667, -0.667, -0.136)	
R3m-BC ₂ N-2	R3m	2.540	25.188	C ₁ :3a (-2, -1, 0.046), C ₂ :3a (-0.667, -0.333, -0.225)	
				C ₃ :3a (-1.333, -0.667, 0.026), C ₄ :3a (-1.333, -0.667, -0.205)	
				B ₁ :3a (-2, -1, -0.057), B ₂ :3a (-1.333, -0.667, -0.140)	
				N ₁ :3a (-2, -1, -0.118), N ₂ :3a (-1.333, -0.667, -0.035)	

Table S1. Lattice constant and atomic Wyckoff positions of the five BC₂N structure at ambient pressure.

Properties	R3m-BC ₂ N	P2/m-BC ₂ N	<i>P2/m</i> -BC ₂ N-2	$R-3m-BC_2N$	R3m-BC ₂ N-2
C_{11}	1007.25	929.93	995.97	1003.41	1002.76
C_{22}	1008.11	1035.37	1030.75	985.4	1006.37
C_{33}	1088.47	954.96	1038.42	981.23	1066.46
C_{44}	400.27	382.53	376.11	395.65	396.27
C_{55}	399.21	327.91	360.52	378.28	396.86
C_{66}	456.01	418.39	429.65	438.57	455.99
C_{12}	106.38	96.60	104.91	84.83	106.73
C_{13}	55.26	77.14	49.76	53.74	61.05
C_{14}	8.29			4.50	6.64
C_{15}	31.09	25.28	29.75	-27.23	35.09
C_{23}	55.96	40.64	33.80	72.47	59.93
C_{25}	-10.75	3.77	7.90	40.57	-15.60
C_{35}	-22.73	19.66	20.72	-11.76	-21.49
C_{46}	-10.26	12.36	12.22	43.34	-14.68

Table S2. Calculated elastic constants C_{ij} (GPa) of five BC₂N at ambient pressure.

Figure S1. (a) is the volume change curve of AA superlattice under different pressurization methods. (b) is the volume change curve of Ab superlattice under different pressurization methods.

Figure S2. Phonon spectra of five BC_2N at ambient pressure (a) R3m- BC_2N (b) P2/m- BC_2N (c) P2/m- BC_2N-2 (d) R-3m- BC_2N (e) R3m- BC_2N-2 .