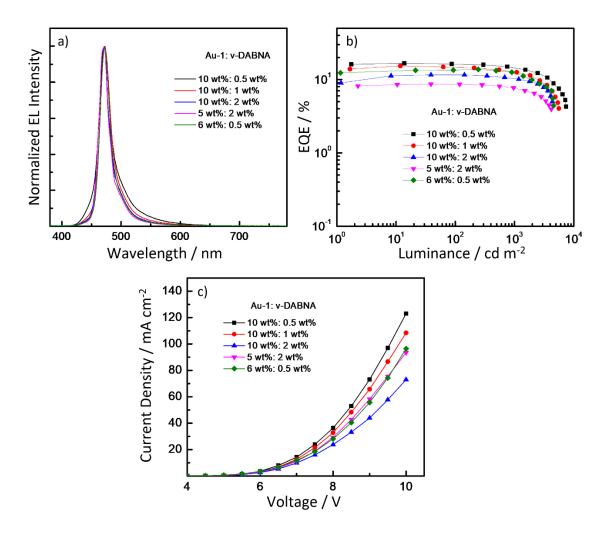
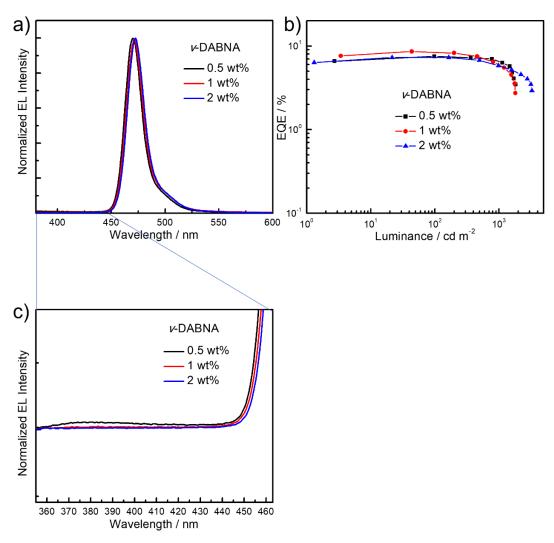
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

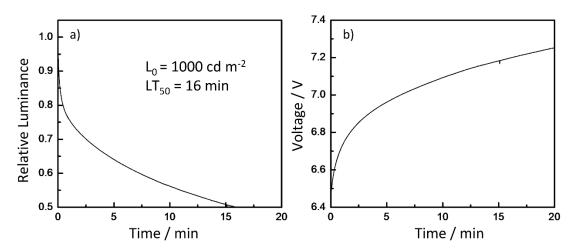
Electronic Supplementary Information


Gold(III)-TADF Emitter as Sensitizer for High-Color-Purity and Efficient Deep-Blue Solution-Processed OLEDs

Dongling Zhou, a Siping Wu, a Gang Cheng*a,b,c and Chi-Ming Che*a,b,c


^a State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China. E-mail: ggcheng@hku.hk; cmche@hku.hk

^b Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong SAR


^c HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518053, China.

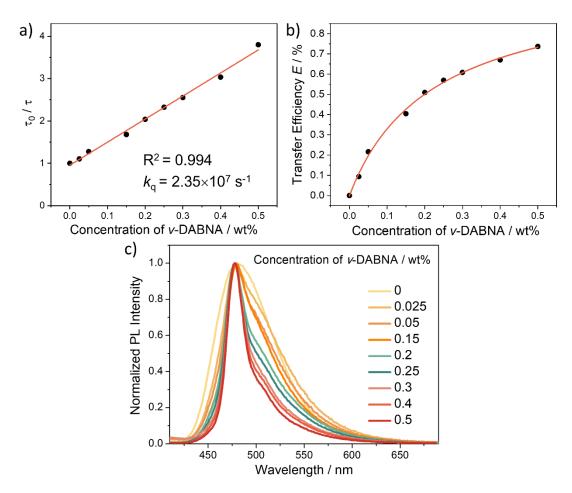

Figure S1. a) Normalized EL spectra, b) EQE-luminance, and c) current density-voltage characteristics of the sensitized SP-OLEDs with various concentrations of **Au-1** and *v*-DABNA.

Figure S2. a) Normalized EL spectra and b) EQE-luminance characteristics of SP-OLEDs based on *v*-DABNA with different doping concentration ranging from 0.5 to 2 wt%. c) Enlarged spectrum of a) between wavelength from 355 to 465 nm.

Figure S3. The dependence of a) relative luminance and b) driving voltage of the device with 10 wt% **Au-1** and 0.5 wt% v-DABNA upon operation time at the initial luminance of 1000 cd m⁻².

Figure S4. a) Stern-Volmer plot of the sensitized system PYD2:**Au-1**(10 wt%): ν -DABNA (0–0.5 wt%). The emission lifetimes were measured at 450 nm. The straight line is a linear fit to the data. b) the plot of transfer efficiency versus the concentration of ν -DABNA. c) normalized emission spectra of **Au-1** (10 wt%) doped in PYD2 and the sensitized systems with different concentration of ν -DABNA.

Table S1. Photophysical properties and corresponding energy transfer parameters of Au-1.

sensitizer	λ _{em} [nm]	Ф _Р [%]	τ [μs]	k _r [s ⁻¹]	HOMO/LUMO [eV]	R ₀ /R _{hg} [nm]	k _{ET} [s ⁻¹]	Фет [%]
Au-1	480	28	0.52	5.38×10 ⁵	-5.16/-2.67	2.81/1.92	1.89×10 ⁷	91

[[]a] The PL data of **Au-1** were recorded in PYD2 thin films (10 wt%); HOMO and LUMO energy levels were estimated according to the CV data measured in DMF.

Table S2. Key performances of SP-OLEDs studied in this work.

Concentration of	L _{max} ^a	CE_{max}^{b}	PE _{max} c	$EQE_{max}{}^{d}$	EQE ₁₀₀₀ e	Roll-offs ^f	CIE g	λ_{max}	FWHM ^h
Au-1 : <i>v</i> -DABNA	(cd m ⁻²)	(cd A ⁻²)	(lm W ⁻¹)	(%)	(%)	(%)	(x, y)	(nm)	(nm)
0: 0.5 wt%	1900	6.31	4.41	7.51	6.41	14.6	0.12, 0.11	470	18
0: 1 wt%	1900	8.07	5.67	8.60	5.96	30.7	0.12, 0.12	471	18
0: 2 wt%	3300	7.09	4.94	7.30	5.83	20.1	0.12, 0.13	472	18
10 wt%: 0	7800	23.9	18.7	12.9	8.98	30.4	0.16, 0.25	473	68
10 wt%: 0.5 wt%	7430	22.5	17.9	16.6	14.4	13.3	0.14, 0.18	472	23
10 wt%: 1 wt%	5620	19.7	14.0	15.3	12.7	17.0	0.13, 0.17	472	22
10 wt%: 2 wt%	4370	13.8	9.35	11.6	10.2	12.1	0.12, 0.17	474	21
5 wt%: 2 wt%	4200	9.82	7.27	8.64	7.66	11.3	0.12, 0.17	475	20
6 wt%: 0.5 wt%	4560	14.8	10.4	13.7	12.1	11.7	0.12, 0.17	472	20

^a Maximum luminance; ^b maximum current efficiency; ^c maximum power efficiency; ^d maximum external quantum efficiency; ^e external quantum efficiency at 1000 cd m⁻²; ^f efficiency roll-offs were calculated based on the formula of $\frac{EQE_{max}-EQE_{1000}}{EQE_{max}} \times 100$; ^g CIE coordinates at 1000 cd m⁻²; ^h full width at half maximum.

Table S3. Key performances of recently reported blue-emitting SP-OLEDs.

Emitter type	$EQE_{max}{}^{a}\\$	EQE ₁₀₀₀ ^a	CIE ^b	FWHM ^c	λ_{max}	Reference
	(%)	(%)	(x, y)	(nm)	(nm)	
Hot-exciton	7.06	N/A	0.15, 0.09	52	452	5
TADF-polymer	18.8	16.1	0.20, 0.31	N/A	469	6
TADF	10.7	7.25 ^d	0.21, 0.41	N/A	496	7
TADF	15.25	9.98	0.16, 0.25	68	473	8
TADF	9.90	1 ^e	0.17, 0.07	42	424	9
TADF	21.6	19.6	0.16, 0.30	76	478	10
Fluorescence	4.10	N/A	0.15, 0.09	62	440	11
TADF	15.8	12.0 ^d	0.16, 0.05	42	428	12
TADF	23.23	6 ^e	0.19, 0.36	N/A	492	13
TADF	10.1	2 ^e	0.16, 0.08	61	424	14
TADF	1.08	N/A	0.19, 0.19	32	464	15
TADF	11.0	7.4	0.15, 0.24	67	474	16
TASF	16.6	14.2	0.14, 0.18	23	472	This work

^a External quantum efficiency; ^b CIE coordinates; ^c full width at half maximum; ^d at 500 cd m⁻²; ^e estimated from the corresponding figures.