Supporting information for

Emergent high superconductivity in layered TaS₃ crystal

Xiaojun Wang^a, Ge Fei^a, Yunxian Liu^{a,b}, Xin Chen^{a,b}* and Xiaobing Liu^{a,b}

^aLaboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China ^bAdvanced Research Institute of Multidisciplinary Science, Qufu Normal University, Qufu, Shandong, 273165, China

*Email: <u>chenxin@qfnu.edu.cn</u>

FIG. S1 The crystal structures of Ta-rich Ta-S compounds. (a) Fmm2 Ta₂S at 0 GPa. (b) $Cmc2_1$ Ta₂S at 60 GPa. (c) *I*4/*mcm* Ta₂S at 180 GPa. (d) $I^{\overline{4}}2m$ Ta₃S at 40 GPa.

FIG. S2 The crystal structures of S-rich Ta-S compounds. (a) $P^{\overline{6}}m^2$ TaS at 60 GPa. (b) $Pm^{\overline{3}}m$ TaS at 80 GPa. (c) R3m Ta₂S₃ at 60 GPa. (d) *I*4/*mmm* Ta₂S₃ at 80 GPa. (e) $P6_3/mmc$ TaS₂ at 0 GPa. (f) C2/m TaS₂ at 50 GPa. (g) *I*4/*mmm* TaS₂ at 60 GPa.

FIG. S3 Phonon dispersions of stable Ta-rich Ta-S compounds. (a) Fmm2 Ta₂S at 0 GPa. (b) $Cmc2_1$ Ta₂S at 60 GPa. (c) *I4/mcm* Ta₂S at 180 GPa. (d) $\overline{I^4}2m$ Ta₃S at 60 GPa. The absence of imaginary frequencies in these structures indicates they are dynamically stable.

FIG. S4 Phonon dispersions of stable S-rich Ta-S compounds. (a) $Pm\bar{}^3m$ TaS at 80 GPa. (b) R3m Ta₂S₃ at 60 GPa. (c) *I4/mmm* Ta₂S₃ at 80 GPa. (d) $P2_1/m$ -exp TaS₃ at 20 GPa. (e) $P2_1/m$ TaS₃ at 40 GPa. (f) $Pm\bar{}^3m$ TaS₃ at 80 GPa. The absence of imaginary frequencies in these structures indicates they are dynamically stable.

FIG. S5 Valence electron localization function (ELF) for (a) Fmm2 Ta₂S phase at 0 GPa, (b) R3m Ta₂S₃ at 0 GPa, and (c) $P6_3/mmc$ TaS₂ at 20 GPa.

FIG. S6 Projected crystal orbital Hamiltonian population (-pCOHP) of $P2_1/m$ TaS₃ at (a) 40 GPa, (b) 50 GPa, (c) 60 GPa and (d) 70 GPa. The positive and negative values of -pCOHP signify bonding and antibonding states, respectively. The Fermi level is set to zero.

FIG. S7 The integrated COHP (ICOHP) for Ta-S and S-S bonds of $P2_1/m$ TaS₃ at the pressure range of 40 to 70 GPa.

FIG. S8 The Fermi surface associated to each band crossing the Fermi level of $P2_1/m$ TaS₃ at 50 GPa.

FIG. S9 The electronic band structures and projected density of states (PDOS) have been calculated at the PBE level for (a) *Fmm*2 Ta₂S at 0 GPa. (b) *Cmc*2₁ Ta₂S at 60 GPa. (c) *I*4/*mcm* Ta₂S at 180 GPa. (d) $P^{\bar{6}}m^2$ TaS at 60 GPa. (e) $Pm^{\bar{3}}m$ TaS at 80 GPa. (f) *R*3*m* Ta₂S₃ at 60 GPa. (g) *I*4/*mmm* Ta₂S₃ at 80 GPa. (h) $Pm^{\bar{3}}n$ TaS₃ at 80 GPa. (i) $I^{\bar{4}}2m$ Ta₃S at 60 GPa.

FIG. S10 The calculated superconducting T_c evolution diagram with pressure for TaS₃ using a typical choice of $\mu^* = 0.1$.

FIG. S11 The phonon dispersions, the Eliashberg spectral function $\alpha^2 F(\omega)$ (orange area) and frequency-dependent electron-phonon coupling parameters $\lambda(\omega)$ (blue line) for $P2_1/m$ TaS₃ at 40 (a) and 50 GPa (b). The radius of each circle in phonon spectra is proportional to the partial electron-phonon coupling strength of each phonon mode.

FIG. S12 The nested Fermi surface of $P2_1/m$ TaS₃ at (a) 50 GPa, (b) 60 GPa and (c) 70 GPa.

FIG. S13 The phonon dispersions, phonon density of states (PHDOS), the Eliashberg spectral function $\alpha^2 F(\omega)$ (orange area) and frequency-dependent electron-phonon coupling parameters $\lambda(\omega)$ (blue line) for $P2_1/m$ TaS₃ at 60 GPa (a) and 70 GPa (b). The radius of each circle in phonon spectra is proportional to the partial electron-phonon coupling strength of each phonon mode.

Phases	Pressure	Lattice parameters	Wyckoff position (fractional)			
	(GPa)	(Å, °)	Atoms	X	у	Z
		a = 7.5771	S(2e)	0.1368	0.7500	0.0993
		b = 3.0328	S(2e)	0.5639	0.7500	0.7356
$P2_{1}/m$	60	c = 4.5143	S(2e)	0.8685	0.2500	0.4190
		$\alpha=\gamma=90.00$	$T_{2}(2_{2})$	0.2188	0.2500	0 7026
		$\beta = 81.58$	14(20)	0.3188	0.2300	0.7920
$Pm\bar{3}n$	100	a = b = c = 4.4177	S(6d)	0.2500	0.5000	0.0000
		$\alpha = \beta = \gamma = 90.00$	Ta(2a)	0.0000	0.0000	0.0000

Table S1 Structural information of $P2_1/m$ and $Pm\bar{3}n$ phases of TaS₃ at 60 and 100 GPa, respectively.

Phase	Pressure (GPa)	λ	$\omega_{\log}(\mathrm{K})$	$T_{c}\left(\mathbf{K}\right)$
$I^{\overline{4}}2m$ Ta ₃ S	20	0.34	404.72	0.6
<i>Fmm</i> 2 Ta ₂ S	50	0.28	475.26	0.1
<i>I4/mcm</i> Ta ₂ S	180	0.47	449.66	4.1
$P\overline{6}m2$ TaS	20	0.67	214.05	6.8
$Pm^{\overline{3}}m$ TaS	80	0.70	228.50	7.9
<i>I4/mmm</i> Ta ₂ S ₃	80	0.40	319.53	1.2
$P2_1/m$ TaS ₃	20	0.30	221.93	0.1
$P2_1/m$ TaS ₃	40	1.54	154.99	20.9
$Pm^{\overline{3}}n$ TaS ₃	80	0.36	338.52	0.7

Table S2. Superconducting properties of the metallic Ta-S phases. The μ^* value for the T_c calculation is taken as 0.1.