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General methods

'"H NMR (400 MHz) and 3C NMR (100 MHz) spectra were measured on a Bruker
Ascend 400 spectrometer using CDCl; as a solvent and the spectral data were reported
in ppm relative to tetramethylsilane (TMS) as an internal standard. Molecular weights
were measured with a Bruker Autoflex Il MALDI-TOF mass spectrometer. Elemental
analyses of carbon, hydrogen, and nitrogen were performed on a Vario EL III
microanalyzer. Thermogravimetric analysis (TGA) was undertaken with a TA
instrument Q600 at a scanning rate of 10 °C/min under nitrogen atmosphere.
Differential scanning calorimetry (DSC) was performed on a Mettler Toledo DSCI
STARe system with nitrogen flow at 20 mL/min. Samples were preheated to above
their melting points, and then cooled down to —30 °C at —100 °C/min before the second
heating and cooling scans were recorded at 20 °C/min. The atomic force microscopy
(AFM) was conducted on a Bruker Dimension ICON. UV-vis absorption spectra were
recorded on a Perkin-Elmer Lambda-900 spectrophotometer. PL spectra were measured
on a Hitachi F-7000 fluorescence spectrophotometer and phosphorescence spectra at
77 K were recorded on a Perkin-Elmer LS 50B spectrofluorometer. The absolute PL
quantum yields were measured using a Hamamatsu C9920-02G integrating sphere
system coupled with a 150 W xenon lamp and a PMA-12 photonic multichannel
analyzer. The transient PL decay measurements were performed using an Edinburgh
Instruments FLS980 spectrometer. CV was carried out using nitrogen-purged
anhydrous THF for the reduction and dichloromethane (DCM) for the oxidation scan

at room temperature with a CHI voltammetric analyzer. Tetrabutylammonium



hexafluorophosphate (TBAPF;) (0.1 M) was used as the supporting electrolyte. The
conventional three-electrode configuration consists of a glassy carbon working
electrode, a platinum wire counter electrode, and a saturated calomel reference
electrode (SCE) with ferrocene/ferrocenium (Fc/Fc*) as the internal standard. The
working electrode surface was previously polished with alumina slurry on a micro
cloth. The dilute sample solutions exhibit reduction and oxidation scans against the
Ag/AgCl reference electrode. Cyclic voltammograms were obtained at a scan rate of
100 mV/s. The reduction and oxidation potentials, E,,(red) and E,;,(0oxd), relative to
Fc/Fc* were used to calculate the LUMO and HOMO levels as —4.80—¢Ex(red) eV
and —4.80—qE»(oxd) eV, respectively, where ¢ is electron charge. All calculations
were performed utilizing the Gaussian 09 program package. Geometry optimizations
were conducted in the framework of the density functional theory (DFT) at the B3LYP
level. The 6-31G(d,p) basis set was used for all the elements. The molecular orbitals
were visualized using Gaussview.

Equations for calculation of rate constants
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Device fabrication and characterization

The fabricated devices were grown on clean glass substrates pre-coated with a 180-
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nm thick layer of ITO with a sheet resistance of 15-20 Q/sq. The ITO surface
underwent a wet-cleaning course in an ultrasonic solvent bath, and then was dried at
120 °C before the UV-Ozone treatment for 20 min. A 40 nm thick PEDOT:PSS layer
used as a hole- injecting layer was spin-coated on the ITO substrate under 3000 rpm
and then baked inside the glove-box at 120 °C for 10 min. The EML was prepared from
10 mg mL~! toluene solution by spin-coating at 1500 rpm on top of the PEDOT:PSS
layer. The electron-transporting, electron-injecting, and cathode layers were
sequentially deposited in a vacuum chamber. Current-brightness—voltage
characteristics were measured using Keithley source measurement units (Keithley 2400
and Keithley 2000) with a calibrated silicon photodiode. The EL spectra were measured
using a SpectraScan PR650 spectrophotometer. External quantum efficiencies were
calculated from the luminance, current density, and EL spectrum, assuming a
Lambertian distribution. All the measurements were carried out in an ambient

atmosphere.



Table S1 Summary of solution-processable orange-red TADF emitters

. AEL CIE EQE
Emitter Ref.
(nm) (x,») (%, Max./@1000)
D(DPXZ-Cz)-DCPP 600 (0.57,0.43) 21.6/18.7 This work
D(DCz-Cz)-DCPP 560 (0.45,0.54) 19.5/17.1 This work
NAI R3 622 (0.60, 0.40) 22.5/3.4 [1]
DDPhCz-DCPP 578 (0.48, 0.50) 20.6/— [2]
PXZPDO 570 (0.47, 0.50) 20.1/18.5 [3]
oDTBPZ-DPXZ 612 (0.60, 0.40) 18.5/- [4]
TAT-DBPZ 604 (0.56, 0.44) 15.4/8.2 [5]
pDTBPZ-DPXZ 608 (0.59,0.41) 14.4/- [4]
DDTPACz-DCPP 646 (0.61, 0.38) 13.6/- [2]
TPXZBM 582 (0.48, 0.49) 12.7/9.9 [3]
TS-1 608 (0.58,0.41) 12.58/— [6]
NAI R2 610 (0.57,0.42) 11.5/3.9 [1]
tDBBPZ-DPXZ 620 (0.62,0.37) 10.1/- [7]
pDBBPZ-DPXZ 612 (0.60, 0.40) 9.3/ [4]
TAT-FDBPZ 611 (0.58,0.41) 9.2/7.4 [5]
FDQPXZ 600 (0.53,0.46) 9.0/6.1 [8]
NAI RI1 616 (0.58,0.41) 9.0/4.3 [1]
DTPAB 605 - 8.2/3.5 [9]
TPA-AQ 612 (0.60, 0.40) 7.5/ [10]
BPXZBM 598 (0.50, 0.46) 7.05/4.0 [3]
TS-2 614 (0.58,0.41) 6.92/— [6]
DPhCzB 587 - 6.7/6.1 [9]
4t-BuCzTTR 592 (0.54, 0.45) 6.2/ [11]
Cz-AQ 572 (0.50, 0.49) 5.8/— [10]
BTZPP 600 (0.56, 0.43) 3.4/- [12]
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