Supporting Information

In situ sulfuration synthesis of heterostructure MoS₂-Mo₂C@C for boosting photocatalytic H₂-production activity of TiO₂

Jinfeng Liu^a, Ping Wang^{*a}, Lulu Gao^a, Xuefei Wang^a, Huogen Yu^{*ab}

^a School of Chemistry, Chemical Engineering and Life Sciences and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China

^b Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China

> *Corresponding authors. Tel: +86(27)87749379; E-mail: wangping0904@whut.edu.cn (Ping Wang); huogenyu@163.com (Huogen Yu)

SI Experimental

SI-1 Materials

Titanium dioxide (TiO₂-P25), sulfur powder (S), ammonium heptamolybdate $((NH_4)_6Mo_7O_{24}\cdot 4H_2O, AR)$, cadmium nitrate $(Cd(NO_3)_2\cdot 4H_2O)$, Zinc nitrate $(Zn(NO_3)_2\cdot 6H_2O)$, sodium sulfide (Na₂S·9H₂O), sodium sulfate (Na₂SO₄), methanol (CH₃OH), and ethyl alcohol (C₂H₅OH) were of analytical grade from Shanghai Chemical Reagent Ltd. (PR China) and used without further purification.

SI-2 Based on the XRD patterns, the weight ratio of MoS_2 and Mo_2C in the MoS_2 -Mo₂C@C samples can be estimated using the following formula S1 [Ref. S1]:

$$W_{\rm A} = \frac{I_{\rm A}}{I_{\rm A} + (I_{\rm B}/(RIR_{\rm B}/RIR_{\rm A}))}$$
$$W_{\rm B} = \frac{I_{\rm B}}{I_{\rm B} + (I_{\rm A}/(RIR_{\rm A}/RIR_{\rm B}))}$$
S1

where I_A and I_B are the intensities of the strongest lines of the X-ray diffraction patterns of MoS₂ and Mo₂C, respectively. The *RIR* values of MoS₂ (JCPDS Card No. 37-1492) and Mo₂C (JCPDS Card No. 35-0787) were obtained by the matrix-flushing method according to the Chung's report [Ref. S2].

SI-3 Characterization

X-ray diffraction (XRD) (D/MAXRB, RIGAKU, Japan), FTIR (Nicolet 6700, Thermo Electron Scientific Instruments, USA), Raman microscope (InVia, Renishaw, UK), and transmission electron microscopy (TEM) (Talos F200S, Thermo Fisher, USA) with an energy-dispersive X-ray spectroscopy (EDS) were used to character the microstructures and morphologies of the photocatalysts. Nitrogen adsorption-desorption isotherms were analyzed by a nitrogen adsorption-desorption apparatus (ASAP 2020, Micromeritics, USA). Elemental analyses were characterized X-ray photoelectron spectroscopy (XPS) (ESCALAB 250Xi, Thermo Scientific, USA). UV-vis spectrophotometer (UV-2450, Shimadzu, Japan) was used to perform the optical absorption property. Time-resolved photoluminescence (TRPL) (FLS920, Edinburgh Instruments, UK) was applied to measure the fluorescence lifetimes.

SI-4 Photoelectrochemical measurements

Photoelectrochemical curves were measured on an electrochemical analyzer (CHI660E, China) in a standard three-electrode configuration. The prepared samples were loaded on fluorine-doped tin oxide (FTO) conductor glass, a standard Ag/AgCl electrode and a platinum foil as the working electrodes, reference electrode and counter electrode, respectively, with Na₂SO₄ (0.5 M) as electrolyte solution. The working electrodes were prepared on fluorine-doped tin oxide (FTO) conductor glass in a typically method. First, photocatalysts (4 mg) were dispersed in a solution which mixed with 1 mL of anhydrous ethanol and 100 μ L of D-520 Nafion solution (5%, w/w, in water and 1-propanol, Alfa Aesar), and then ultrasonicated for 30 min to achieve the suspension solution. The suspension was spread on the FTO glass which dried at 60°C for one night. Linear sweep voltammetry (LSV) curves were obtained in the potential ranging of -0.4 to -1.5 V with a scan rate of 10 mV s⁻¹. Transient photocurrent responses (*i-t*) curves were conducted at a static potential of +0.5 V.

Electrochemical impedance spectroscopy (EIS) was performed at a frequency range of 10⁻²-10⁴ Hz. The Mott-Schottky plots were measured at a fixed frequency of 3000 Hz to determine the flat band potential. A 3W LED lamp (365 nm) was served as the irradiator.

SI-5 Measurement of photocatalytic hydrogen evolution

Photocatalytic hydrogen production activity was evaluated with 50 mg of photocatalyst dispersed in a 100 mL three-necked Pyrex glass containing 80 mL of methyl alcohol (10 vol%) under four LEDs (3 W, 365 nm, Shenzhen Lamplic Science Co. Ltd., China). The system was bubbled with N₂ for 15 min to guarantee hydrogen production process occurring in an inert atmosphere. After four 365 nm-LED lights irradiated the system, 400 μ L of gas was injected into a gas chromatograph (Shimadzu, GC-2014C, Japan) with a thermal conductivity detector and a 5 Å molecular sieve column with nitrogen as a carrier gas. The apparent quantum efficiency (AQE) was calculated according to the equation S2:

$$AQE(\%) = \frac{number \ of \ reacted \ electrons}{number \ of \ incident \ photons} \times 100\%$$
$$= \frac{number \ of \ evolved \ H_2 \ molecules \ \times 2}{number \ of \ incident \ photons} \times 100\% \qquad S2$$

SI-6 Fluorescent lifetime of the samples

The lifetime of photogenerated charge carries of samples are fitted by a biexponential function as the equation S3 [Ref 3]:

$$I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$$
 S3

where τ_1 and τ_2 are the lifetime of photogenerated charge carries, and A_1 , and A_2 are

the corresponding amplitudes. The short lifetime component for τ_1 represents the radiation-recombination time of photogenerated carriers, while the longer lifetime component for τ_2 originates from the nonradioactive recombination of the relaxation effect for photogenerated charges and the τ_{av} represents the average excited-state lifetime.

References

[1] Y. Lu, J. Zhang, F. Wang, X. Chen, Z. Feng, and C. Li, K₂SO₄-assisted hexagonal/monoclinic WO₃ phase junction for efficient photocatalytic degradation of RhB. ACS Applied Energy Materials, 1 (2018) 2067-2077.

[2] H. Frank, Quantitative interpretation of X-ray diffraction patterns of mixtures. I. matrix-flushing method for quantitative multicomponent analysis. Journal of Applied Crystal 7 (1974) 519-525.

[3] X. Wang, C. Liow, A. Bisht, X. Liu, T. Sum, X. Chen, S. Li, Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion, Advanced Materials, 27 (2015) 2207-2214.

Figure captions

Fig. S1 Nitrogen adsorption-desorption isotherms of (a) TiO₂, (b) Mo₂C@C/TiO₂, (c) MoS₂-Mo₂C@C/TiO₂, and (d) MoS₂@C/TiO₂.

Fig. S2 The photocatalytic H_2 -evolution performance of $MoS_2-Mo_2C@C/TiO_2$ photocatalyst under different pH value (A) and methanol concentration (B).

Fig. S3 (A) XRD patterns and (B) XPS spectra of Mo 3d for the MoS_2 - $Mo_2C@C/TiO_2$ sample: (a) before and (b) after the cyclic photocatalytic hydrogen-production reaction.

Fig. S4 Linear sweep voltammetry curves of (a) Mo₂C@C, (b) MoS₂-Mo₂C@C, and (c) MoS₂@C.

Fig. S5 Mott-Schottky plots of (a) TiO_2 and (b) $MoS_2-Mo_2C@/TiO_2$ photocatalyst in Fig. S5 Mott-Schottky plots of (a) TiO_2 and (b) $MoS_2-Mo_2C@/TiO_2$ photocatalyst in Na_2SO_4 solution (0.1 mol L⁻¹).

Fig. S6 (A, B) XRD patterns and (C, D) UV-vis spectra of (a) CdS, (a') MoS₂-Mo₂C@C/CdS, (b) ZnS, and (b') MoS₂-Mo₂C@C/ZnS.

-	-	
Samples	Specific surface area	Pore volume
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$
TiO ₂	54.41	0.52
Mo ₂ C@C/TiO ₂	45.58	0.60
MoS ₂ -Mo ₂ C@C/TiO ₂	44.05	0.63
MoS ₂ @C/TiO ₂	42.11	0.57

 Table S1 The specific surface area and pore volume of various photocatalysts.

Samples	H ₂ -evolution rate	AQE
Samples	$(\mu mol h^{-1} g^{-1})$	(%)
TiO ₂	10	0.03
MoS ₂ -Mo ₂ C@C-500/TiO ₂	860	2.58
MoS ₂ -Mo ₂ C@C-600/TiO ₂	940	2.82
MoS ₂ -Mo ₂ C@C-700/TiO ₂ (MoS ₂ -	1160	3.48
Mo ₂ C@C/TiO ₂)	1100	
MoS ₂ -Mo ₂ C@C-800/TiO ₂	800	2.4
Mo ₂ C@C/TiO ₂	610	1.83
MoS ₂ @C/TiO ₂	300	0.9

Table S2 The H_2 -evolution performance and apparent quantum efficiency (AQE) of the various samples.

Fig. S1 Nitrogen adsorption-desorption isotherms of (a) TiO_2 , (b) $Mo_2C@C/TiO_2$, (c)

 $MoS_2\text{-}Mo_2C@C/TiO_2\text{, and (d) }MoS_2@C/TiO_2\text{.}$

Fig. S2 The photocatalytic H₂-evolution performance of $MoS_2-Mo_2C@C/TiO_2$ photocatalyst under different pH value (A) and methanol concentration (B).

Fig. S3 (A) XRD patterns and (B) XPS spectra of Mo 3d for the $MoS_2-Mo_2C@C/TiO_2$ sample: (a) before and (b) after the cyclic photocatalytic hydrogen-production reaction.

Fig. S4 Linear sweep voltammetry curves of (a) $Mo_2C@C$, (b) $MoS_2-Mo_2C@C$, and

(c) MoS₂@C.

Fig. S5 Mott-Schottky plots of (a) TiO_2 and (b) $MoS_2-Mo_2C@/TiO_2$ photocatalyst in Na_2SO_4 solution (0.1 mol L⁻¹).

Fig. S6 (A, B) XRD patterns and (C, D) UV-vis spectra of (a) CdS, (a') MoS₂-Mo₂C@C/CdS, (b) ZnS, and (b') MoS₂-Mo₂C@C/ZnS.