Electronic Supplementary Information: Ultrafast Charge Transfer and Carrier Dynamics in a WS$_2$/MoSe$_2$ Few-Layer van der Waals Heterostructure

Ang Bian,a Shaohua Fu,a Pengzhi Wang,a Kun Zhao,a Jiaqi He,b Xiaoxian Zhang,a Dawei He,a,* Yongsheng Wang,a,* and Hui Zhaoa,c

a Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China. E-mail: dwhe@bjtu.edu.cn; yshwang@bjtu.edu.cn
b College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
c Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, USA. E-mail: huizhao@ku.edu
Fig. ESI1 (a) Experimental configuration to study probe-wavelength dependence of the differential reflectance signal of the 3L-WS$_2$/3L-MoSe$_2$ heterostructure. (b) Peak differential reflectance as a function of the probe wavelength with a 1.57-eV pump. The peak signal for each wavelength is obtained by choosing the probe delay that produces the maximal signal.

Fig. ESI2 Differential reflectance of a 1.95-eV probe pulse measured from the 3L-WS$_2$/3L-MoSe$_2$ heterostructure with a 1.57-eV pump pulse of various fluences as labeled. (a) and (b) show the signal on short- and long-time ranges, respectively. The orange curves are bi-exponential fits (see main text). The inset of (b) shows the linear relation between the peak signal and the pump fluence, which is obtained by choosing the probe delay that produces the maximal signal.
Fig. ES13 Differential reflectance of a 1.95-eV probe pulse measured from the 3L-WS₂/3L-MoSe₂ heterostructure with a 3.02-eV pump pulse of various fluences as labeled. (a) and (b) show the signal on short- and long-time ranges, respectively. The orange curves are bi-exponential fits (see main text). The inset of (b) shows the linear relation between the peak signal and the pump fluence, which is obtained by choosing the probe delay that produces the maximal signal.

Fig. ES14 (a) Experimental configuration to study probe-wavelength dependence of the differential reflectance signal of the 3L-WS₂/3L-MoSe₂ heterostructure. (b) Peak differential reflectance as a function of the probe wavelength with a 2.25-eV pump. The peak signal for each wavelength is obtained by choosing the probe delay that produces the maximal signal.

Fig. ES15 Differential reflectance of a 1.57-eV probe pulse measured from the 3L-WS₂/3L-MoSe₂ heterostructure with a 2.25-eV pump pulse of various fluences as labeled. (a) and (b) show the signal on short- and long-time ranges, respectively. The inset of (b) shows the linear relation between the peak signal and the pump fluence, which is obtained by choosing the probe delay that produces the maximal signal.