Supporting Information

Scanning the Optoelectronic Properties of Cs₄Cu_xAg_{2-2x}Sb₂Cl₁₂ Double

Perovskite Nanocrystals: Role of Cu²⁺ Content

Ye Zhang^a, Ning Sui^{a, *}, Zhihui Kang^a, Xiangdong Meng^c, Long Yuan^c, Xianfeng Li^aand Han-zhuang Zhang^a, Jiaqi Zhang^{b,*} and Yinghui Wang^{a,*}

^a Femtosecond Laser laboratory, Femtosecond Laser laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China.

E-mail: yinghui_wang@jlu.edu.cn, sui@jlu.edu.cn

^b Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, China.

E-mail: zhangjiaqi@jlu.edu.cn.

^c Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, P. R. China;

† These authors contributed equally to this work

Section 1. Calculation Details of nonlinear absorption coefficient (β) and the twophoton absorption cross section (σ)

The influence of the solvent nonlinearity could be excluded. The two-photon absorption (TPA) coefficient β of Cs₄Cu_xAg_{2-2x}Sb₂Cl₁₂ in toluene solvents can be obtained by fitting the experimental results with equation:¹⁻³

$$T(z,S=1) = \sum_{m=0}^{\infty} \frac{\left[-q_0(z,0)\right]^m}{(m+1)^{3/2}}$$

 $q_0(z) = \beta I_0 / (1 + \frac{z^2}{z_0^2}); z_0 = k\omega_0^2/2 \text{ is the Rayleigh length}, k = 2\pi/\lambda \text{ is the wave vector}, \omega_0 \text{ is beam}$ waist radius of Gaussian pulse, and I_0 is the pulse irradiance. The TPA coefficient β is related to the TPA cross section σ by using⁴

$$\sigma = \frac{\beta h v 10^3}{Nc}$$

where N is Avogadro's number, c is the concentration, h is Planck's constant, and v is the laser frequency. In this experiment, the concentration of $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ is 2.0×10^{-5} (x = 0.60), 1.6×10^{-5} (x = 0.75), 1.8×10^{-5} (x = 0.90) and 1.9×10^{-5} (x = 1.00) M, respectively. σ is expressed in Göppert-Mayer units (GM), with 1 GM = 1×10^{-50} cm⁴ s molecule⁻¹ photon⁻¹.

Section 2: Calculation of average numbers of absorbed photons <N>, absorption cross-section σ

The probability of a nanocrystal contains N excitons is described by Poisson distribution (Eq. S1):

$$P_N = \frac{e^{-\langle N \rangle} \times \langle N \rangle^N}{N!} \tag{S1}$$

where (N) is the average number of photons per nanocrystal and can be calculated by (Eq. S2):

$$\langle N \rangle = j\sigma$$
 (S2)

where σ is the absorption cross section, and j is incident photon density per pulse. We can calculate σ by (Eq. S3)

$$P_{max} = \sum_{N=1}^{\infty} P_N = 1 - P_0 = 1 - e^{-\langle N \rangle} = 1 - e^{-j\sigma}$$
(S3)

 σ of NCs can be obtained by fitting the data with equation of $1 - e^{-j\sigma}$ (solid line in Fig. 3b).

Section 3. Table and Figure

At. %	X = 0.60	X = 0.75	X = 0.90	X = 1.00
Cs	21.25	22.14	20.89	18.8
Cu	2.16	3.20	4.18	5.00
Ag	2.89	2.01	0.93	0.00
Sb	12.06	11.25	11.09	11.20
Cl	61.20	60.89	62.70	63.50

Table S1. Fitting results for the XPS patterns of elements composition ratios for $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ perovskite NCs.

Fig. S1. XPS spectra of $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ (x = 0.60, 0.75, 0.90 and 1.00) samples for (a) Ag 3d and (b) Cu 2p signals, which is consistent with the previous report⁵. The spectra have calibrated using the Carbon 1s peak. The red square shows that the satellite peaks are located between 940 eV and 950 eV (x = 0.90), suggesting that the Cu²⁺ really exists in our samples⁶.

Fig. S2. The fitting XPS spectra for Cs 3d, Cl 2p and Sb 3d signals of $Cs_4CuSb_2Cl_{12}$ NCs. The spectra have been calibrated using the Carbon 1s peak.

Fig. S3. Scheme of the atomic models for the $\mathsf{Cs}_4\mathsf{CuSb}_2\mathsf{Cl}_{12}$ layered double perovskite.

Fig. S4. Bandgaps of $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ perovskite NCs (x = 0.60 (a), 0.75 (b), 0.90 (c) from left to right) estimated by Tauc plot. Bandgap is extrapolated from the linear portion of the $(\alpha dhv)^2$ versus the hv curve in the direct band gap Tauc plots, where α is the absorption coefficient, d is the sample thickness, and hv is the photon energy.

Fig. S5. TEM image of $Cs_4Cu_xAg_{2-2x}Sb_2CI_{12}$ perovskite NCs (x = 0.60). Inset: HR-TEM imaging and size distribution image.

Fig. S6. TEM image of $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ perovskite NCs (x = 0.75). Inset: HR-TEM imaging and size distribution image.

Fig. S7. TEM image of $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ perovskite NCs (x = 0.90). Inset: HR-TEM imaging and size distribution image.

Fig. S8. TEM image of $Cs_4Cu_xAg_{2-2x}Sb_2CI_{12}$ perovskite NCs (x = 1.00). Inset: HR-TEM imaging and size distribution image.

Fig. S9. Temperature-dependent absorption spectra of $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ perovskite NCs (x = 0.60 (a), 0.75 (b), 0.90 (c) from left to right).

Fig. S10. Contour plot of the TA data of $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ perovskite NCs (x = 0.90 (a), 0.75 (b) and 0.60 (c) from left to right).

Fig. S11. Bleach kinetics of $Cs_4Cu_xAg_{2-2x}Sb_2Cl_{12}$ perovskite NCs (x = 0.90 (a), 0.75 (b), 0.60 (c) from top to bottom) under various flux, in which the solid lines are the fits to the kinetic traces according to the carrier recombination model.

Fig. S12. Response-current of photodetector based on $Cs_4Cu_{0.60}Ag_{0.80}Sb_2Cl_{12}$ NC as a function of pump intensities (a) and time (b).

Fig. S13. I-V curve for varying intensities of $Cs_4Cu_xAg_{2-2x}Sb_2CI_{12}$ perovskite NCs (x = 1.00 (c), 0.90 (b), 0.75 (a) from right to left)

References:

- 1. Huang, T.-H., et al., Opt. Mater. 2013, 35, 467-471.
- 2. Sheik-Bahae, M.; Said, A. A., IEEE J. Quantum Electron. 1990, 26, 760-769.

3. Zhang, Y.; Wang, Q.; Sui, N.; Kang, Z.; Li, X.; Zhang, H.-z.; Zhang, J.; Wang, Y., *Appl. Phys. Lett.* 2021, *119*.

- 4. Ho-Wu, R.; Yau, S. H.; Goodson, T., ACS Nano 2016, 10, 562-572.
- 5. Cai, T., et al., J. Am. Chem. Soc. 2020, 142, 11927-11936.

6. P. P. A.; Joshi, M.; Verma, D.; Jadhav, S.; Choudhury, A. R.; Jana, D., ACS Applied Nano Materials 2021, 4, 1305-1313.