## Supplemental Material for "(DSF)<sub>n</sub>-graphene: carbon semimetal with double stacking faults"

Juan Wei<sup>a</sup>, Weixiang Kong<sup>a</sup>, Xiaoliang Xiao<sup>a</sup>, Wangping Xu<sup>b</sup>, Rui Wang<sup>a</sup>, Li-Yong Gan<sup>a</sup>, Jing Fan<sup>c</sup>, and Xiaozhi Wu<sup>a,\*</sup>

<sup>a</sup>Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 401331, P. R. China

<sup>b</sup>Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, P. R. China

<sup>c</sup>Center for Computational Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China

## Method and computational details

The first-principles calculations were carried out using the density functional theory (DFT) as implemented in the Vienna Ab initio Simulation Package (VASP)<sup>1,2</sup>. The generalized gradient approximation (GGA) in the form of the Perdew-Burke-Ernzerh (PBE)<sup>3</sup> was adopted for the exchange-correlation functional. The electron-ion interaction was designated by projector augmented wave(PAW) methods potentials<sup>4</sup>. Heyd-Scuseria-Ernzerhof (HSE06) function was used to predict more accurate electronic structure<sup>5</sup>. The energy cutoff employed for plane wave expansion of electron wave-function was set to 520 eV. The convergence criterion of total energy was set to be  $1 \times 10^{-6}$  eV and the thickness of the slab model was set to be larger than 16Å to avoid specious interaction between adjacent atom layers. Geometry optimization was executed until the remanent Hellmann-Feynman forces on the ions were less than 0.01 eV/Å. The Brillouin zone (BZ) of (DSF)<sub>3</sub>-graphene and (DSF)<sub>4</sub>graphene were performed by using  $3 \times 11 \times 1$  and  $3 \times 13 \times 1$  Monkhorst-Pack sampling scheme k-point mesh<sup>6</sup>, and the dynamic stability of new structures has been examined by the phonon calculations and finite temperature molecular dynamics. Edge states were presented using the iterative Greens method<sup>7</sup> as implemented in the WANNIERTOOLS package.<sup>8</sup> We built the tight-binding (TB) Hamiltonian using

maximally localized Wannier functions (MLWF) methods by using the WANNIER90 package.<sup>9,10</sup>

|             | E <sub>f</sub><br>(eV/atom) | ρ<br>(atom/Ų) |                               | E <sub>f</sub><br>(eV/atom) | ρ<br>(atom/Ų) |
|-------------|-----------------------------|---------------|-------------------------------|-----------------------------|---------------|
| graphene    | 0                           | 0.379         | (DSF) <sub>1</sub> -graphene  | 0.4322                      | 0.3528        |
| graphyne    | 0.640                       | 0.292         | (DSF) <sub>2</sub> -graphene  | 0.3409                      | 0.3588        |
| BPC         | 0.630                       | 0.304         | (DSF)3-graphene               | 0.2806                      | 0.3631        |
| T-graphene  | 0.518                       | 0.336         | (DSF) <sub>4</sub> -graphene  | 0.2367                      | 0.3659        |
| New-C       | 0.469                       | 0.353         | (DSF)5-graphene               | 0.2049                      | 0.3678        |
| New-W       | 0.373                       | 0.358         | (DSF) <sub>6</sub> -graphene  | 0.1802                      | 0.3693        |
| Hopgraphene | 0.25                        | 0.361         | (DSF)7-graphene               | 0.1611                      | 0.3704        |
| δ-graphene  | 0.262                       | 0.364         | (DSF) <sub>8</sub> -graphene  | 0.1453                      | 0.3713        |
| Phagraphene | 0.19                        | 0.370         | (DSF)9-graphene               | 0.1325                      | 0.3720        |
| ψ-graphene  | 0.159                       | 0.369         | (DSF) <sub>10</sub> -graphene | 0.1220                      | 0.3726        |
| SW graphene | 0.149                       | 0.372         | (DSF) <sub>ll</sub> -graphene | 0.1129                      | 0.3732        |
| SW40        | 0.13                        | 0.372         | (DSF) <sub>12</sub> -graphene | 0.1048                      | 0.3735        |
|             |                             |               | (DSF)13-graphene              | 0.0983                      | 0.3740        |

Table. S1 The corresponding total energies  $(E_f)$  and planar atomic density of the newly discovered and previously proposed carbon allotropes relative to graphene.



Fig. S1 The molecular dynamics simulations under 300K (500 K and 700 K) and phonon dispersion, (a), (b) and (c) are  $(DSF)_3$ -graphene, (d), (e) and (f) are  $(DSF)_4$ -graphene, where (g) and (f) are the phonon spectrums of  $(DFS)_3$ -graphene and  $(DSF)_4$ -graphene, respectively.



Fig. S2 The band structures of newly discovered carbon allotropes of  $(DSF)_n$ graphene, where n increases from 5 to 13. The band structures near the Dirac cones of  $(DSF)_7$ -graphene,  $(DSF)_{10}$ -graphene and  $((DSF)_{13}$ -graphene are enlarged.



Fig. S3 The corresponding charge in the proximity of Dirac cone is major distributed at the grain boundary along the armchair direction.

## References

- [1] G. Kresse, J. Furthmuller, Comp. Mater. Sci, 1996, 6, 15-50.
- [2] G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169-11186.
- [3] J.P. Perdew, K. Burke, M. Ernzerhof, (vol 77, pg 3865, 1996), Phys. Rev. Lett., 1997, **78**, 1396.
- [4] P.E. Blochl, Phys. Rev. B, 1994, **50**, 17953-17979.
- [5] J. Heyd, G.E. Scuseria, J. Chem. Phys., 2004, 120, 7274-7280.
- [6] J.D. Pack, H.J. Monkhorst, Phys. Rev. B, 1977, 16, 1748-1749.
- [7] M.P.L. Sancho, J.M.L. Sancho, J. Rubio, J. Phys. F: Met. Phys, 1984, 14, 1205-1215.
- [8] Q.S. Wu, S.N. Zhang, H.F. Song, M. Troyer, A.A. Soluyanov, Comput. Phys. Commun., 2018, 224, 405-416.
- [9] N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Rev. Mod. Phys., 2012, 84, 1419-1475.
- [10] A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput.Phys. Commun., 2008, **178**, 685-699.