Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Neuron-Inspired Multifunctional Conductive Hydrogel for Flexible

Wearable Sensors

Lu Zhang^{a,b}, Jing Wang^{a,b}, Shiwen Wang^{a,b}, Lili Wang^{a,b}, Minghua Wu^{a,b,*}

^a Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang

Sci-Tech University, Hangzhou 310018, Zhejiang, China.

^b Key Laboratory of Advanced Textile Materials and Manufacturing Technology,

Ministry of Education, College of Textile Science and Engineering(International

Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.

*Corresponding author: Minghua Wu

E-mail: wmh@zstu.edu.cn

Content

4 Pages

5 Figures (Fig. S1-S5)

Table (Table S1)

S1/S4

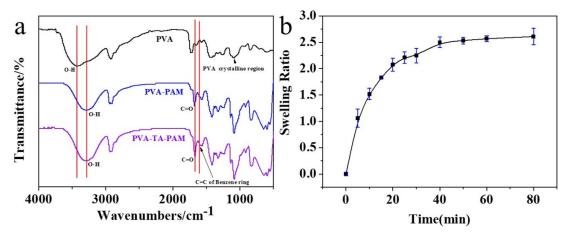


Fig.S1 (a) FT-IR of PVA/TA/PAM, (b) Swelling ratio of PVA/TA/PAM.

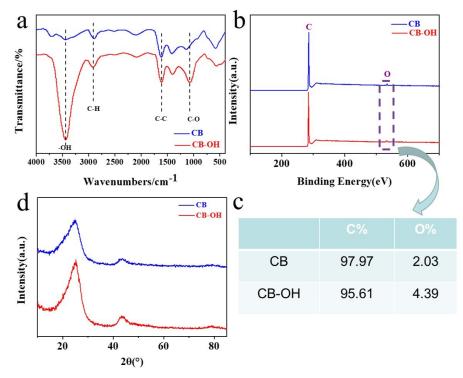


Fig.S2 (a) FT-IR of CB and CB-OH, (b) XPS of CB and CB-OH, (c) the content of C and O of CB and CB-OH, (d) XRD of CB and CB-OH.

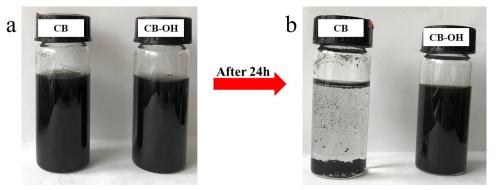


Fig.S3 The dispersion liquid photographs of (a) CB and CB-OH, (b) CB and CB-OH after

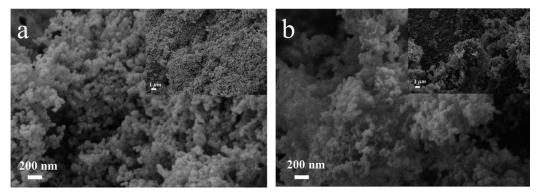


Fig.S4 SEM image of (a) CB and (b) CB-OH

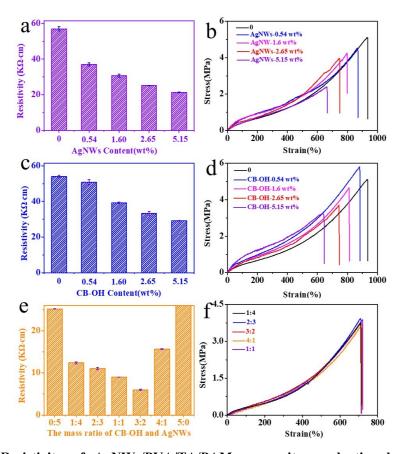


Fig.S5 (a) Resistivity of AgNWs/PVA/TA/PAM composite conductive hydrogels with different AgNWs content, (b) Stress-strain curves of AgNWs/PVA/TA/PAM composite conductive hydrogels with different AgNWs content, (c) Resistivity of CB-OH/PVA/TA/PAM composite conductive hydrogels with different CB-OH content, (d) Stress-strain curves of CB-OH/PVA/TA/PAM composite conductive hydrogels with different CB-OH content, (e) Resistivity of AgNWs/CB-OH/PVA/TA/PAM composite conductive hydrogels with different mass ratios of AgNWs and CB-OH, (f) Stress-strain curves of AgNWs/CB-OH/PVA/TA/PAM composite conductive hydrogels with different mass ratios of AgNWs and CB-OH

Table S1 The sensitivity comparison of our composite conductive hydrogel-based multifunctional flexible wearable sensor with that of previously reported hydrogel-based flexible wearable sensors

Composition	Strain	Pressure	Durability	Reference
	sensitivity(GF)	sensitivity(S)	(cycle times)	
MXene/PVA/PVP	19.18	10.75	380	46
CNTs/HAPAAm	4.32	0.127	300	45
PAA/PVA/Fe ³⁺ /borax/CNT/EG	1.61	0.243	150	49
SiO ₂ -g-PBA/P(AAm-co-LMA)	5.44	0.131	300	43
PVA/CNTs/graphene	152.6	0.127	1000	31
PAM/PVA	-	0.05	500	14
PVA/SA/BC/MCC	5.01	0.033	-	47
PVA/Borax/SA/TA	15.98	-	-	1
HP(AAm/AA)–CS–Fe ³⁺	3.621	-	300	2
CS/PHEAA	6.9	0.224	500	51
PAAm-co-APMA/rGO/PDA	5.4	0.074	300	50
AgNWs/CB-	68.64	0.229	300	This work
OH/PVA/TA/PAM				