### **Electronic Supplementary Information**

### Dual-Function Fluorescent Hydrazone-Linked Covalent Organic

### Frameworks with Acid Vapor Sensing and Iron(III) Ion Sensing

Wei Gong,<sup>a</sup> Chunyu Liu,<sup>a</sup> Hongliang Shi,<sup>a</sup> Maoxing Yin,<sup>a</sup> Weijun Li,<sup>a</sup> Qingbao Song,<sup>a</sup> Yujie Dong,<sup>\*a</sup> Cheng Zhang<sup>\*a</sup>

<sup>a</sup> College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road,

Hangzhou 310014, P. R. China. E-mail: czhang@zjut.edu.cn; dongyujie@zjut.edu.cn

# **Table of Contents**

| Synthetic Procedures                                  | 3 |
|-------------------------------------------------------|---|
| N <sub>2</sub> adsorption-desorption isotherms curves | 6 |
| SEM images                                            | 7 |
| Fluorescence emission spectra                         | 8 |
| Atomic Coordinates                                    | 9 |

#### **Synthetic Procedures**

Synthesis of monomers:



Synthesis of 3,3',6,6'-tetrabromo-9,9'-bicarbazole (TBCZ): 3, 6-dibromocarbazole (1.625 g, 5 mmol), potassium permanganate (1.975 g, 12.5 mmol) and acetone (6 mL) were added into a 250 mL two-neck flask, and the reaction mixture was reflux for 6 h. After cooled to room temperature, the reaction mixture was extracted by DCM/H<sub>2</sub>O. The collected the organic layer was dried by anhydrous magnesium sulfate. The solvent was removed by vacuum evaporation and the crude product was purified by column chromatography to give TBCZ as a white solid with a yield of 78.7%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.29 (d, *J* = 1.7 Hz, 4H), 7.49 (dd, *J* = 8.6, 1.8 Hz, 4H), 6.76 (d, *J* = 8.6 Hz, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  138.54, 130.4, 123.95, 122.70, 115.02, 110.54.

Synthesis of 9,9'-bicarbazole]-3,3',6,6'-tetracarbaldehyde (TFCZ): TBCZ (1.296 g, 2.0 mmol) and anhydrous tetrahydrofuran (THF, 60 mL) were added to a 250 mL two necked round-bottom flask. After stirring for 15 minutes, the reaction mixture was cooled to -78 °C, then n-BuLi (2.4 M, 4.7 mL, 11.2 mmol) was added dropwise via syringe in around 5 minutes. After further stirring at -78 °C for 3 hours, a solution of dimethylformamide (3 mL) was added dropwise in 5 minutes. The reaction mixture was further stirred at -78 °C for another 2 hours, then warmed to room temperature and stirred at room temperature overnight. The reaction mixture was poured into large amount of water and extracted by DCM. Collected organic layer, dried by anhydrous magnesium sulfate. The solvent was removed by vacuum evaporation and the crude product was purified by column chromatography to give a white solid TFCZ with a yield of 30.0 %. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.21 (s, 4H), 8.87 (s, 4H), 8.03 (d, *J* =

7.0 Hz, 4H), 7.09 (d, J = 8.4 Hz, 4H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  192.56, 143.51, 132.26, 129.66, 125.28, 122.57, 110.23. HRMS (ESI): m/z [M + HCOO]<sup>-</sup> calcd for C<sub>29</sub>H<sub>17</sub>N<sub>2</sub>O<sub>6</sub>: 489.1092; found: 489.1100.

Synthesis of diethyl 2,5-dihydroxyterephthalate (DDT): 2, 5-dihydroxy terephthalic acid (3.01 g, 15.2 mmol), ethanol (60 mL) and concentrated sulfuric acid (12 mL) were added into a 250 mL two-neck flask, and the reaction mixture was reflux for 18 h. After cooled to room temperature, the reaction mixture was poured into 200 ml ice water to precipitate white solids. The sediment was filtered and rinsed with water. The filter cake was dissolved in DCM and dried with anhydrous magnesium sulfate. The solvent was removed by vacuum evaporation and the crude product was purified by column chromatography (petroleum ether/ dichloromethane, v/v = 2:1) to give DDT as a green solid with a yield of 95.53%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  10.15 (s, 2H), 7.50 (s, 2H), 4.45 (s, 4H), 1.43 (s, 6H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  169.07, 152.93, 118.49, 117.69, 62.01, 14.05.

Synthesis of diethyl 2-(hexyloxy)-5-((hexyloxy)methyl)terephthalate (DMDH): Diethyl 2,5-dihydroxyterephthalate DDT (1 g, 3.9 mmol), K<sub>2</sub>CO<sub>3</sub> (2.49 g, 18.05 mmol) and 1-bromohexane (1.03 g, 9.45 mmol) were suspended in dimethylformamide (20 ml). The resulting mixture was refluxed at 90 °C under N<sub>2</sub> atmosphere for 8.5 h. After cooled to room temperature, the reaction mixture was poured into large amount of water and extracted by dichloromethane. Collected organic layer, dried by anhydrous magnesium sulfate. The solvent was removed by vacuum evaporation and the crude product was purified by column chromatography (petroleum ether/ dichloromethane, v/v = 2:1) to give DMDH as a colorless oil with a yield of 85.6%. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 (s, 2H), 4.34 (q, J = 7.1 Hz, 4H), 3.97 (t, J = 6.5 Hz, 4H), 1.80 – 1.74 (m, 4H), 1.48 – 1.42 (m, 4H), 1.36 (t, J = 7.1 Hz, 6H), 1.33 – 1.29 (m, 8H), 0.90 – 0.86 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.14, 151.74, 124.79, 116.82 – 116.39, 69.99, 61.27, 31.51, 29.23, 25.67, 22.56, 14.22, 13.99.

**Synthesis of 2,5-bis(hexyloxy)terephthalohydrazide (DHZDH):** Diethyl 2,5-bis(hexyloxy)terephthalate DMDH (1.125 g, 3.625 mmol), hydrazine hydrate (2.12 ml,

43.5 mmol) and ethanol (15 ml) were added in a flask and reflux at 84 °C under N<sub>2</sub> atmosphere for 5 h. The mixture was cooled to 0 °C, and white solid precipitates out. The precipitates was filtered and washed with ethanol, and then dried under vacuum to afford a white solid with a yield of 74.55%. The product does not require further purification. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  9.21 (s, 2H), 7.39 (s, 2H), 4.57 (d, *J* = 4.2 Hz, 4H), 4.06 (t, *J* = 6.6 Hz, 4H), 1.80 – 1.70 (m, 4H), 1.45 – 1.28 (m, 12H), 0.92 – 0.80 (m, 6H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  165.39, 150.84, 123.09, 115.81, 69.95, 31.39, 29.06, 25.68, 22.52, 13.96. HRMS (ESI): m/z [M+H] <sup>+</sup> calcd for C<sub>20</sub>H<sub>34</sub>N<sub>4</sub>O<sub>4</sub>: 395.2653; found: 395.2672.

# N<sub>2</sub> adsorption–desorption isotherms curves



Fig. S1  $N_2$  adsorption-desorption isotherms curves for CZ-DHZ-COF.

# SEM images



Fig. S2 SEM images of CZ-DHZ-COF.



Fig. S3 SEM images of Chitosan aerogel.



Fig. S4 SEM images of CZ-DHZ-COF&Chitosan aerogel.

# Fluorescence emission spectra



Fig. S5 Fluorescence emission spectra of CZCA, Chitosan aerogel and that of treated with  $Fe^{3+}$  (10<sup>-4</sup> M).

### **Atomic Coordinates**

| CZ-DHZ-COF(AA Spacking): Space group symmetry P1<br>a = b = 23.17 Å, $c = 4.89$ Å<br>$\alpha = \beta = \gamma = 90^{\circ}$ |         |         |         |      |         |         |         |
|-----------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------|---------|---------|---------|
| Atom                                                                                                                        | Х       | Y       | Ζ       | Atom | Х       | Y       | Ζ       |
| N1                                                                                                                          | -0.5226 | -0.1707 | -0.938  | H82  | -0.2499 | -0.5395 | -0.0478 |
| O2                                                                                                                          | -0.4789 | -0.1407 | -0.5536 | H83  | -0.483  | -0.8521 | -0.9653 |
| C3                                                                                                                          | -0.5049 | -0.1281 | -0.7618 | H84  | -0.628  | -0.9733 | -0.9498 |
| O4                                                                                                                          | -0.6157 | -0.0865 | -0.9734 | H85  | -0.1475 | -0.4396 | -0.3236 |
| C5                                                                                                                          | -0.572  | -0.0468 | -0.9061 | H86  | -0.0873 | -0.563  | -0.3132 |
| C6                                                                                                                          | -0.5176 | -0.0662 | -0.8149 | C87  | -0.4424 | -0.905  | -0.4323 |
| C7                                                                                                                          | -0.4752 | -0.0252 | -0.7502 | C101 | -0.3872 | -0.8712 | -0.3698 |
| 08                                                                                                                          | -0.8746 | -0.4958 | -0.2681 | C102 | -0.3704 | -0.8285 | -0.5966 |
| N9                                                                                                                          | -0.8646 | -0.5562 | 0.0887  | C103 | -0.3276 | -0.7821 | -0.4955 |
| C10                                                                                                                         | -0.8971 | -0.5221 | -0.0803 | C104 | -0.3552 | -0.7225 | -0.4473 |
| 011                                                                                                                         | -0.9797 | -0.5905 | -0.3979 | C105 | -0.4049 | -0.7239 | -0.2433 |
| C12                                                                                                                         | -0.9598 | -0.5175 | -0.0422 | H116 | -0.3942 | -0.8474 | -0.1769 |
| C13                                                                                                                         | -0.9811 | -0.4768 | 0.1436  | H117 | -0.4096 | -0.8079 | -0.6836 |
| C14                                                                                                                         | -0.9986 | -0.5495 | -0.2061 | H118 | -0.2935 | -0.7765 | -0.6532 |
| C15                                                                                                                         | -0.7097 | -0.5218 | -0.0146 | H119 | -0.3708 | -0.7041 | -0.6427 |
| C16                                                                                                                         | -0.6865 | -0.572  | -0.1388 | H120 | -0.3909 | -0.7452 | -0.0526 |
| C17                                                                                                                         | -0.6308 | -0.5685 | -0.2464 | H131 | -0.4463 | -0.9404 | -0.2802 |
| C18                                                                                                                         | -0.5987 | -0.5183 | -0.2314 | H132 | -0.4801 | -0.8759 | -0.4105 |
| C19                                                                                                                         | -0.6196 | -0.4696 | -0.0988 | H151 | -0.351  | -0.9019 | -0.3364 |
| C20                                                                                                                         | -0.6755 | -0.4715 | 0.0094  | H152 | -0.3494 | -0.8536 | -0.7624 |
| C21                                                                                                                         | -0.5974 | -0.6079 | -0.3885 | H153 | -0.3052 | -0.7964 | -0.3061 |
| C22                                                                                                                         | -0.5471 | -0.5793 | -0.4563 | H154 | -0.3214 | -0.6929 | -0.3679 |
| N23                                                                                                                         | -0.5474 | -0.5246 | -0.3593 | H155 | -0.4427 | -0.7473 | -0.3279 |
| C24                                                                                                                         | -0.6061 | -0.6659 | -0.4561 | H156 | -0.4184 | -0.6791 | -0.1963 |
| C25                                                                                                                         | -0.562  | -0.6948 | -0.6024 | C88  | -0.6385 | -0.0804 | -1.2447 |
| C26                                                                                                                         | -0.5116 | -0.664  | -0.6806 | C106 | -0.7002 | -0.1047 | -1.2593 |
| C27                                                                                                                         | -0.5038 | -0.6062 | -0.6064 | C107 | -0.7042 | -0.162  | -1.4158 |
| N28                                                                                                                         | -0.5019 | -0.4843 | -0.3692 | C108 | -0.68   | -0.213  | -1.2524 |
| C29                                                                                                                         | -0.4469 | -0.4926 | -0.2856 | C109 | -0.6872 | -0.2694 | -1.4126 |
| C30                                                                                                                         | -0.4134 | -0.4445 | -0.3374 | C110 | -0.6637 | -0.3207 | -1.253  |
| C31                                                                                                                         | -0.4497 | -0.4042 | -0.4566 | H121 | -0.7187 | -0.1095 | -1.0511 |
| C32                                                                                                                         | -0.5033 | -0.4301 | -0.473  | H122 | -0.6813 | -0.1582 | -1.6146 |
| C33                                                                                                                         | -0.4402 | -0.3479 | -0.5497 | H123 | -0.7033 | -0.2164 | -1.0546 |

 $\textbf{Table S1} \ \text{Atomistic coordinates for the AA-stacking mode of CZ-DHZ-COF}$ 

| C34 | -0.4874 | -0.3176 | -0.6639 | Н124 | -0.6639 | _0.2662 | -1 6104 |
|-----|---------|---------|---------|------|---------|---------|---------|
| C35 | -0.542  | -0.3451 | -0.6832 | H125 | -0.671  | -0.2002 | -1.3716 |
| C36 | -0.5502 | -0.4015 | -0.5875 | H133 | -0.6094 | -0.1027 | -1 3907 |
| C37 | -0.4237 | -0.5416 | -0.1631 | H134 | -0.6401 | -0.0344 | -1 3107 |
| C38 | -0.3647 | -0.542  | -0.1022 | H157 | -0 7278 | -0.0728 | -1 3684 |
| C39 | -0 3295 | -0.4937 | -0.1635 | H158 | -0.7505 | -0 1704 | -1 4609 |
| C40 | -0.3545 | -0.4435 | -0.2792 | H159 | -0.6335 | -0.2057 | -1.21   |
| C41 | -0.7707 | -0.5183 | 0.0666  | H160 | -0.7337 | -0.2769 | -1.456  |
| C42 | -0.566  | -0.7574 | -0.657  | H161 | -0.6859 | -0.3247 | -1.0529 |
| C43 | -0.4805 | -0.2569 | -0.7518 | H162 | -0.6166 | -0.3154 | -1.219  |
| C44 | -0.2668 | -0.4988 | -0.1204 | C89  | -0.9451 | -0.6364 | -0.2901 |
| N45 | -0.8049 | -0.5625 | 0.0504  | C96  | -0.9645 | -0.6942 | -0.4099 |
| N46 | -0.5232 | -0.2297 | -0.8674 | C97  | -0.927  | -0.7446 | -0.3044 |
| N47 | -0.5219 | -0.8409 | -0.8748 | C98  | -0.8843 | -0.7686 | -0.5168 |
| O48 | -0.6102 | -0.8724 | -0.7574 | C99  | -0.8381 | -0.7255 | -0.6137 |
| C49 | -0.5604 | -0.8841 | -0.8148 | C100 | -0.795  | -0.7094 | -0.3902 |
| O50 | -0.4408 | -0.9284 | -0.7014 | H111 | -1.0101 | -0.7015 | -0.347  |
| N51 | -0.5292 | -0.7814 | -0.8225 | H112 | -0.9562 | -0.7805 | -0.2449 |
| C52 | -0.4867 | -0.9659 | -0.7591 | H113 | -0.9092 | -0.784  | -0.6967 |
| C53 | -0.5428 | -0.9462 | -0.8281 | H114 | -0.8584 | -0.686  | -0.6979 |
| C54 | -0.5846 | -0.9874 | -0.9007 | H115 | -0.8162 | -0.6845 | -0.2249 |
| N55 | -0.1714 | -0.4622 | -0.1784 | H135 | -0.9482 | -0.639  | -0.0634 |
| O56 | -0.1668 | -0.5095 | 0.2241  | H136 | -0.8995 | -0.6285 | -0.3461 |
| C57 | -0.142  | -0.491  | 0.0229  | H145 | -0.964  | -0.6921 | -0.6367 |
| O58 | -0.0585 | -0.4221 | 0.3431  | H146 | -0.9034 | -0.7323 | -0.1162 |
| N59 | -0.2319 | -0.4578 | -0.194  | H147 | -0.8626 | -0.8071 | -0.4285 |
| C60 | -0.0403 | -0.4656 | 0.1623  | H148 | -0.8136 | -0.7461 | -0.7832 |
| C61 | -0.0791 | -0.498  | 0.0002  | H149 | -0.7605 | -0.682  | -0.4797 |
| C62 | -0.0577 | -0.5387 | -0.1859 | H150 | -0.7748 | -0.7487 | -0.3026 |
| H63 | -0.5437 | -0.1591 | -1.1174 | C90  | -0.0943 | -0.378  | 0.2267  |
| H64 | -0.4326 | -0.0393 | -0.6872 | C91  | -0.0804 | -0.3199 | 0.358   |
| H65 | -0.8852 | -0.5827 | 0.2308  | C92  | -0.119  | -0.2709 | 0.2497  |
| H66 | -0.9514 | -0.4518 | 0.2672  | C93  | -0.1833 | -0.2781 | 0.3265  |
| H67 | -0.7116 | -0.6111 | -0.1607 | C94  | -0.2203 | -0.2966 | 0.0813  |
| H68 | -0.5944 | -0.4305 | -0.0863 | C95  | -0.2822 | -0.31   | 0.1678  |
| H69 | -0.6928 | -0.4331 | 0.105   | H137 | -0.14   | -0.3888 | 0.2688  |
| H70 | -0.645  | -0.6882 | -0.393  | H138 | -0.0879 | -0.3745 | 0.0019  |
| H71 | -0.4772 | -0.6853 | -0.7898 | H139 | -0.0853 | -0.3232 | 0.5832  |
| H72 | -0.4645 | -0.5838 | -0.6585 | H140 | -0.1031 | -0.23   | 0.3414  |
| H73 | -0.3981 | -0.3282 | -0.5312 | H141 | -0.1883 | -0.3099 | 0.4949  |
| H74 | -0.5788 | -0.3225 | -0.7671 | H142 | -0.2211 | -0.2611 | -0.0715 |
| H75 | -0.5921 | -0.4216 | -0.5991 | H143 | -0.3018 | -0.2721 | 0.2706  |
| H76 | -0.4499 | -0.579  | -0.1215 | H144 | -0.3084 | -0.3209 | -0.015  |

| H77 | -0.346  | -0.5805 | -0.0131 | H126 | -0.0346 | -0.309  | 0.3143  |
|-----|---------|---------|---------|------|---------|---------|---------|
| H78 | -0.3288 | -0.4059 | -0.3286 | H127 | -0.1133 | -0.2665 | 0.0249  |
| H79 | -0.7883 | -0.4766 | 0.1248  | H128 | -0.2    | -0.2362 | 0.4036  |
| H80 | -0.5965 | -0.7827 | -0.5403 | H129 | -0.2017 | -0.3355 | -0.0174 |
| H81 | -0.4398 | -0.2352 | -0.7168 | H130 | -0.2827 | -0.3475 | 0.3093  |