Supporting Information

Efficient Circularly Polarized Thermally Activated Delayed Fluorescence Hetero-[4]Helicene with Carbonyl-/ Sulfone-Bridged Triarylamine Structures

Sheng-Yi Yang ${ }^{1 \#}$, Qi-Sheng Tian ${ }^{1 \#}$, Xiang-Ji Liao ${ }^{2 \#}$, Zheng-Guang Wu ${ }^{2,4}$, Wan-Shan Shen ${ }^{1}$, You-Jun Yu^{1}, Zi-Qi Feng ${ }^{1}$, You-Xuan Zheng ${ }^{2 *}$, Zuo-Quan Jiang ${ }^{1 *}$, and LiangSheng Liao ${ }^{1,3}$
${ }^{1}$ Institute of Functional Nano \& Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials \& Devices, Soochow University, Suzhou, Jiangsu 215123, China.
${ }^{2}$ State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
${ }^{3}$ Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China.
${ }^{4}$ Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.

E-mail: yxzheng@nju.edu.cn; zqjiang@suda.edu.cn
\# These authors contributed equally to this work.

Contents

1 Experimental Section S3
1.1 Materials and instruments S3
1.2 Single crystal information S5
1.3 Device fabrication process S5
1.4 Syntheses of materials S6
1.4.1 Synthesis of compound 2 S6
1.4.2 Synthesis of compound 3 S7
1.4.3 Synthesis of compound QPO S8
1.4.4 Synthesis of compound 5 S9
1.4.5 Synthesis of compound 6 S10
1.4.6 Synthesis of compound QPO-Br S10
1.4.7 Synthesis of compound QPO-PhCz S11
1.5 Density functional theory S12
2 Supplemental Figures S18
2.1 Structural properties S18
2.2 Photophysical properties S19
2.3 Theoretical calculation S20
2.4 Chiroptical properties S21
2.5 Thermal properties S29
2.6 Electrochemical properties S30
2.7 Electroluminescence properties S30
2.8 Circularly polarized electroluminescence properties S32
3 Supplementary Tables S33
3.1 Crystal data and structure refinement S33
3.2 Electroluminescence characteristics S35
4 Copy of NMR Spectra and MALDI-TOF-MS Plot S36
4.1 ${ }^{1} \mathrm{H}$ NMR plot of $2,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S36
$4.2 \quad{ }^{13} \mathrm{C}$ NMR plot of $2,101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S36
$4.3{ }^{1} \mathrm{H}$ NMR plot of $3,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S37
$4.4 \quad{ }^{13} \mathrm{C}$ NMR plot of $3,101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S37
$4.5{ }^{1} \mathrm{H}$ NMR plot of QPO, 400 MHz , DMSO S38
$4.6{ }^{13} \mathrm{C}$ NMR plot of QPO, 101 MHz , DMSO S38
4.7 ${ }^{1} \mathrm{H}$ NMR plot of $5,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S39
4.8 ${ }^{13} \mathrm{C}$ NMR plot of $5,101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S39
$4.9{ }^{1} \mathrm{H}$ NMR plot of $6,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S40
$4.10{ }^{13} \mathrm{C}$ NMR plot of $6,101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S40
$4.11{ }^{1} \mathrm{H}$ NMR plot of QPO-Br, 400 MHz , DMSO S41
$4.12{ }^{13} \mathrm{C}$ NMR plot of QPO-Br, 101 MHz , DMSO S41
$4.13{ }^{1} \mathrm{H}$ NMR plot of QPO- $\mathrm{PhCz}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S42
$4.14{ }^{13} \mathrm{C}$ NMR plot of QPO-PhCz, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ S42
4.15 MALDI-TOF-MS plot of QPO S43
4.16 MALDI-TOF-MS plot of QPO-Br S43
4.17 MALDI-TOF-MS plot of QPO-PhCz S44
5 References S44

1 Experimental Section

1.1 Materials and instruments

All chemicals and reagents were used as received from commercial sources without further purification. tetrahydrofuran and toluene used in synthetic routes were purified by PURE SOLV (Innovative Technology) purification system. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 spectrometer or Bruker 600 spectrometer at room temperature. Mass spectroscopy was performed using a Thermo Fisher ISQ Single Quadrupole GC-MS with direct probe system. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was performed on Bruker Autoflex II/Compass 1.0. Elemental analysis was measured using Vario Micro cube. Ultra-violet-visible absorption spectra were measured by a Shimadzu UV-2600 spectrophotometer. Fluorescent and phosphorescent spectra were measured by a Hitachi F-4600 spectrophotometer. Thermogravimetric analysis (TGA) was performed by a METTLER TOLEDO TGA1 under nitrogen atmosphere. The temperature was increased to $700^{\circ} \mathrm{C}$ with a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. Differential scanning calorimetry (DSC) measurements were performed by a METTLER TOLEDO DSC1 under nitrogen atmosphere. The temperature was increased and decreased with a heating or cooling rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. Molecular geometries were extracted in single crystals and performed by Gaussian 09 W program package with density functional theory (DFT) with Beck's three-parameter hybrid exchange functional ${ }^{[1,2]}$ and Lee, and Yang and Parr correlation functional ${ }^{[3]}$ (B3LYP) with 6-31G(d) basic set. Non-covalent
interactions (NCI) of intramolecular interactions analyses were carried out by Multiwfn ${ }^{[4]}$ with reduced density gradient (RDG). ${ }^{[5]}$ The NCI results were plotted via VMD software (version 1.9.3). ${ }^{[6]}$ Cyclic voltammetry (CV) was performed on a CHI 600D electrochemical work station with a scan rate of $100 \mathrm{mV} \mathrm{S}^{-1}$ at room temperature under an argon flow, in which a Pt disk, a Pt plate and a $\mathrm{Ag} / \mathrm{AgCl}$ electrode were used as working electrode, counter electrode and reference electrode in tetra-nbutylammonium hexa-fluorophosphates $\left(n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}, 0.1 \mathrm{M}\right)$ dichloromethane/ $\mathrm{N}, \mathrm{N}-$ dimethylformamide solution, respectively. For calibration, the redox potential of ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$was measured under the same conditions. The photoluminescence quantum efficiency (PLQY) was measured using Hamamatsu C9920-02G in nitrogen or air atmosphere. Transient spectra were obtained by using Quantaurus-Tau fluorescence lifetime measurement system (C11367-03, Hamamatsu Photonics Co.) in air or nitrogen atmosphere. The separation of isomers with chiral configurations was performed by chiral high-performance liquid chromatography (HPLC) were separated by IG column which was employed as stationary phase and hexane/dichloromethane/isopropanol (70/20/10) as eluent. The circular dichroism (CD) spectra were measured on a Jasco-1500 circular dichroism spectrometer. The circularly polarized photoluminescence (CPPL) spectra were measured on a Jasco CPL-300 spectrophotometer with "Standard" sensitivity at $200 \mathrm{~nm} / \mathrm{min}$ scan speed and respond time of 2.0 s employing "slit" mode. The circularly polarized electroluminescence (CPEL) spectra were measured on a JASCO CPPL-300 spectrophotometer with 'Standard' sensitivity at $200 \mathrm{~nm} / \mathrm{min}$ scan speed and respond time of 2.0 s employing
"band" mode.

1.2 Single crystal information

A suitable crystal was selected and it on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 100.0 or 173.0 K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization. The crystals of $\mathbf{Q P O}$ and $\mathbf{Q P O}-\mathbf{P h C z}$ were grown by slow evaporation in CHCl_{2} and methanol. The X-ray crystallographic coordinates for structure reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number QPO (2051469) and QPO-PhCz (2051470). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre "http://www.ccdc.cam.ac.uk/data request/cif".

1.3 Device fabrication process

OLEDs were fabricated on ITO glass substrates layer ($110 \mathrm{~nm}, 15 \Omega /$ square $)$ under a base pressure of 3×10^{-6} Torr. The active area of each device is $0.09 \mathrm{~cm}^{2}$. Deposition rates and thicknesses of all materials were monitored with oscillating quartz crystals. Doping layers were deposited by utilizing two different sensors to monitor the deposition rates of both host material and dopant material. The deposition rate of host was controlled at $0.2 \mathrm{~nm} \mathrm{~s}^{-1}$, and the deposition rate of the dopant was adjusted according to the volume ratio doped in the host materials. The electroluminescence
(EL) and current density-voltage $(J-V)$ characteristics of the devices were measured by a constant current source (Keithley 2400 SourceMeter) combined with a photometer (Photo Research SpectraScan PR655).

1.4 Syntheses of materials

1.4.1 Synthesis of compound 2

1

10H-phenothiazine, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF
$150^{\circ} \mathrm{C}, 12$ hours

A mixture of 1 ($3.0 \mathrm{~g}, 24.79 \mathrm{mmol}$), 10 H -phenothiazine ($5.4 \mathrm{~g}, 27.27 \mathrm{mmol}$) and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(10.0 \mathrm{~g}, 74.37 \mathrm{mmol})$ in $100 \mathrm{~mL} N$, N-Dimethylformamide (DMF) was stirred for 12 hours at $150{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After cooled to room temperature, the mixture was extracted with dichloromethane solution $(4 \times 30 \mathrm{~mL})$, and the combined organic layer with dichloromethane (DCM) solution was dried over MgSO_{4}. We used rotary evaporation to remove off the solvent and used silica gel column to pass the residue, which using petroleum ether (PE)/ DCM (v/v, 4:1) as an eluent to obtain 2 as white solid ($6.8 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93$ (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{td}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}$, $2 \mathrm{H}), 6.90-6.80(\mathrm{~m}, 4 \mathrm{H}), 6.07(\mathrm{dd}, J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.7,142.8,135.3,134.8,133.5,129.1,127.1,126.9,123.2,120.9,116.2,115.9$, 115.3, 53.4. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$ (\%): C, 75.97; H, 4.03; N, 9.33; S, 10.67; found:

C, 75.84; H, 3.92; N, 9.25; S, 10.62.

1.4.2 Synthesis of compound 3

A mixture of $2(3.0 \mathrm{~g}, 10.00 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{wt} \%, 10 \mathrm{~mL})$ in $50 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{COOH}$ was stirred for 4 hours at $110{ }^{\circ} \mathrm{C}$ under an air atmosphere. After cooled to room temperature, the reaction system was extracted with dichloromethane ($4 \times 45 \mathrm{~mL}$), and the combined organic solution was dried over MgSO_{4}. We used rotary evaporation to remove off the solvent and used silica gel column to pass the residue, which using $\mathrm{PE} /$ $\operatorname{DCM}(\mathrm{v} / \mathrm{v}, 3: 1)$ as an eluent to obtain $\mathbf{3}$ as white solid ($3.1 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{td}, J=$ $7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=8.7$, 7.3, 1.6 Hz, 2H), $7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.3,139.7,136.1,135.2,133.2,132.2,130.6,123.9,123.5,123.0,116.3$, 115.8, 114.9. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (\%): C, 68.66; H, 3.64; N, 8.43; S, 9.65; found: C, 68.63; H, 3.70; N, 8.41; S, 9.76.

1.4.3 Synthesis of compound QPO

A mixture of $\mathbf{3}(3.0 \mathrm{~g}, 9.04 \mathrm{mmol})$ and trifluoromethanesulfonic acid $(10 \mathrm{~mL})$ in 50 mL single neck round bottom flask was stirred for 12 hours at $80^{\circ} \mathrm{C}$ under an air atmosphere. After cooling to room temperature, the mixture was poured into 100 mL ice water and filtered to get crude product. The crude product was purified by column chromatography on silica gel using PE/ DCM (3/2, v/v) as eluent to afford QPO as yellow powder ($1.1 \mathrm{~g}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.56(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.45$ (dd, $J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=7.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.68-$ 7.53 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 177.4, 140.2, 139.6, 138.6, 134.5, 133.9, 131.9, 129.2, 128.6, 127.3, 127.1, 126.7, 126.2, 126.1, 125.0, 124.5, 124.2, 123.2, 121.8. MALDI-MS (m/z) of C19H11NO3S for $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 333.05; found, 334.01. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ (\%): C, 68.46; H, 3.33; N, 4.20; S, 9.62; found: C, 68.45; H, 3.33; N, 4.31; S, 9.83 .

1.4.4 Synthesis of compound 5

A mixture of $4(5.0 \mathrm{~g}, 25.13 \mathrm{mmol}), 10 H$-phenothiazine $(5.5 \mathrm{~g}, 27.64 \mathrm{mmol})$ and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(17.3 \mathrm{~g}, 125.65 \mathrm{mmol})$ in 100 mL DMF was stirred for 12 hours at 150 ${ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After cooled to room temperature, the mixture was extracted with dichloromethane solution $(4 \times 30 \mathrm{~mL})$, and the combined organic layer with DCM solution was dried over MgSO_{4}. We used rotary evaporation to remove off the solvent and used silica gel column to pass the residue, which using PE/ DCM (v/v, 1:1) as an eluent to obtain $\mathbf{5}$ as white solid ($8.5 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.08(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 4 \mathrm{H}), 5.98-5.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.3,140.2,139.3,134.1,130.4,128.5,127.0,126.9,123.4,120.2,118.7$, 115.3, 114.8. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{~S}$ (\%): C, 60.17; H, 2.92; N, 7.39; S, 8.45; found: C, $60.20 ; \mathrm{H}, 2.96 ; \mathrm{N}, 7.46 ; \mathrm{S}, 8.81$.

1.4.5 Synthesis of compound 6

A mixture of $5(5.0 \mathrm{~g}, 13.23 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{wt} \%, 20 \mathrm{~mL})$ in $100 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{COOH}$ was stirred for 4 hours at $110{ }^{\circ} \mathrm{C}$ under an air atmosphere. After cooled to room temperature, the reaction system was extracted with dichloromethane ($4 \times 45 \mathrm{~mL}$), and the combined organic solution was dried over MgSO_{4}. We used rotary evaporation to remove off the solvent and used silica gel column to pass the residue, which using PE/ $\mathrm{DCM}(\mathrm{v} / \mathrm{v}, 1: 1)$ as an eluent to obtain 6 as white solid ($4.9 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.20-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.01-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.65$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (ddd, $J=8.7,7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.45-$ $6.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.8,139.7,137.9,134.1,133.4,131.7$, 127.4, 124.3, 123.8, 123.3, 117.8, 115.4, 114.2. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ (\%): C, 55.49; H, 2.70; N, 6.81; S, 7.80; found: C, 55.60; H, 2.74; N, 6.83; S, 7.86.

1.4.6 Synthesis of compound QPO-Br

A mixture of $\mathbf{6}(3.0 \mathrm{~g}, 7.32 \mathrm{mmol})$ and trifluoromethanesulfonic acid $(15 \mathrm{~mL})$ in 100 mL single neck round bottom flask was stirred for 12 hours at $80^{\circ} \mathrm{C}$ under an air atmosphere. After cooling to room temperature, the mixture was poured into 150 mL ice water and filtered to get crude product. The crude product was purified by column chromatography on silica gel using PE/ DCM (1/1, v/v) as eluent to afford QPO-Br as yellow powder ($0.9 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.47$ (ddd, $J=11.2,7.7$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.36$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, J $=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=8.5,8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 177.6,140.9$, $140.6,140.3,138.9,133.4,131.7,130.2,129.1,128.5,128.2,128.0,127.0,126.6$, 125.6, 124.9, 123.9, 122.9, 116.3. MALDI-MS (m/z) of C19H10BrNO3S for $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 410.96; found, 413.13. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{BrNO}_{3} \mathrm{~S}$ (\%): C, $55.36 ; \mathrm{H}, 2.45 ; \mathrm{N}$, 3.40; S, 7.78; found: C, $55.40 ; \mathrm{H}, 2.51 ; \mathrm{N}, 3.42 ; \mathrm{S}, 7.72$.

1.4.7 Synthesis of compound $\mathbf{Q P O}-\mathbf{P h C z}$

QPO-Br

QPO-PhCz

A mixture of QPO-Br ($0.9 \mathrm{~g}, 2.19 \mathrm{mmol}$), 4-(9H-carbazol-9-yl) phenylboronic acid $(0.8 \mathrm{~g}, 2.63 \mathrm{mmol})$, aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{M}, 5 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1 \mathrm{~g}, 0.11 \mathrm{mmol})$ in 100 mL tetrahydrofuran (THF) was stirred for 24 hours at $65^{\circ} \mathrm{C}$ under a nitrogen
atmosphere. After cooled to room temperature, the mixture was extracted with dichloromethane solution $(4 \times 30 \mathrm{~mL})$, and the combined organic layer with dichloromethane solution was dried over MgSO_{4}. We used rotary evaporation to remove off the solvent and used silica gel column to pass the residue, which using PE/ DCM (v/v, 1:1) as an eluent to obtain QPO-PhCz as yellow solid ($0.8 \mathrm{~g}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.73-8.63(\mathrm{~m}, 1 \mathrm{H}), 8.62-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.13$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 - $7.60(\mathrm{~m}, 4 \mathrm{H}), 7.43$ (t, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.5,140.6,137.7,137.3,137.1,134.4,131.9,131.8$, $128.8,127.4,126.5,125.9,125.5,124.8,124.2,123.4,121.9,120.4,120.1,109.7$. MALDI-MS (m/z) of C37H22N2O3S for [M+H] ${ }^{+}$: calcd. 574.14; found, 574.09. Anal. calcd for $\mathrm{C}_{37} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\%): \mathrm{C}, 77.33 ; \mathrm{H}, 3.86 ; \mathrm{N}, 4.87$; S, 5.58 ; found: C, $77.26 ; \mathrm{H}$, 3.82; N, 4.95; S, 5.61.

1.5 Density functional theory

The structural optimization of $\mathbf{Q P O}$ and $\mathbf{Q P O}-\mathbf{P h C z}$ were conducted with the geometries obtained from the X-ray crystallographic analyses. The ground state moments of QPO and QPO-PhCz were obtained using density functional theory (DFT) method by adopting B3LYP/6-31g(d) level of theory.

Cartesian coordinates of $\mathbf{Q P O}$ in ground state:

S	-2.43087400	0.55504700	0.76250300
O	-3.72384800	1.06250200	0.39908500

O
-2.17333900
0.31417800
2.15803500

O

3.41235800	2.00352100	-1.11385100
0.30911100	-0.35570700	0.05034300
-2.07413700	-0.90571300	-0.12138200
-1.17049900	1.58510800	0.12331700

C
$-3.11024400 \quad-1.72728500 \quad-0.56154200$

H

C

C

C
$-1.41028300 \quad 2.93184500 \quad-0.08764400$

H

C
$\begin{array}{rrr}-2.28600400 & 3.28345900 & 0.02547700 \\ 0.09886800 & 1.02041100 & -0.06392600\end{array}$

C

H

C
$-0.36819300 \quad 3.76937200 \quad-0.46480200$

H

C

H

C

H

C

C

-0.52557700	4.69293800	-0.62188100
1.85434200	-2.06494300	0.86142200
1.11998700	-2.62282900	1.08892500
-1.49155000	-3.27442000	-1.39289300
-1.28880100	-4.09840800	-1.81969800
2.51981700	1.34727400	-0.59923800
-2.82454800	-2.92675300	-1.18055600

$\begin{array}{llll}\mathrm{H} & -3.52480500 & -3.50553300 & -1.45769100\end{array}$

C $4.02167800 \quad-0.46371700 \quad 0.18967400$

H
$4.76393600 \quad 0.07886300 \quad-0.04810100$

C
$1.15703900 \quad 1.88227000 \quad-0.41739300$

C
$1.62941900 \quad-0.81875200 \quad 0.26484800$

C
$4.23952000 \quad-1.68720300 \quad 0.77815900$

H
$5.12398200 \quad-1.98794600 \quad 0.95061200$

C
0.90080400
3.24190200
-0.60923600

H
1.61751800
3.81917500
-0.84494000

C
3.14438600
-2.48144700
1.11853000

H
3.28942400
-3.32324900
1.53413800

Cartesian coordinates of $\mathbf{Q P O}-\mathbf{P h C z}$ in ground state:
$\begin{array}{llll}\mathrm{S} & 1.92428300 & -2.52130300 & -0.48825500\end{array}$

O
1.36334500
-2.04715200
-1.71936100

O
1.87828200
-3.92960300
-0.21526400

O
$6.41540300 \quad 1.84889700 \quad 0.01080800$
$\begin{array}{llll}\mathrm{N} & 2.65871500 & 0.25509500 & 0.12632000\end{array}$

N
$-3.63487300 \quad 0.38639300 \quad-0.34253600$

C
1.66190000 $-0.28961500 \quad 0.99744500$

C
$3.75351800 \quad-0.56777600 \quad-0.17296900$

C
$2.79056800 \quad 1.66189700-0.04911300$

C

C

C

C

C

H

C

C

C

H

C

H

C

C

H

C

H

C

C

C

C

C
$3.57143400 \quad-1.94088200 \quad-0.35319700$
$-5.33273100 \quad-1.13587900 \quad-0.22170400$
$5.06000800 \quad-0.06037700 \quad-0.23219400$
$1.24215800 \quad-1.61569500 \quad 0.83042200$
$1.13616400 \quad 0.43925300 \quad 2.05843600$
$1.42823800 \quad 1.32951200 \quad 2.21359100$
$-4.83014400 \quad 1.10365300 \quad-0.26113400$
$1.66203600 \quad 2.48671300-0.21222400$
$-0.71883200 \quad 2.48772100 \quad 0.51769300$
$\begin{array}{lll}-0.50980600 & 3.21357700 & 1.09324400\end{array}$
$-0.07719000 \quad 0.94715900 \quad-1.20489200$
$0.58245400 \quad 0.58601900 \quad-1.78580400$
$0.26835400 \quad 1.96647200 \quad-0.31567500$
$\begin{array}{lll}-2.00117300 & 1.96626400 & 0.51936000\end{array}$
$-2.65354400 \quad 2.30442400 \quad 1.12127100$
$-1.36880400 \quad 0.45800400 \quad-1.24608700$
$-1.60367200 \quad-0.21024900 \quad-1.87917700$
$-3.93140200 \quad-0.98184500 \quad-0.30616100$
$4.08093100 \quad 2.22654200 \quad-0.09631100$
$-2.32883500 \quad 0.94574100 \quad-0.36061400$
$-5.89728700 \quad 0.19375900 \quad-0.18412100$
$6.12738800 \quad-0.94142400 \quad-0.38593100$

H

C

H

C

H

C

H

C

H

C

C

H
C

H

C

H

C

H

C
H
C

H

C

H

$7.01025700-0.59362000 \quad-0.43344400$

| -5.87865000 | -2.41375600 | -0.17370100 |
| :--- | :--- | :--- | :--- |

| -6.82059900 | -2.53454400 | -0.14669900 |
| :--- | :--- | :--- | :--- |

0.19029400	-0.13071400	2.88567100

H	-0.18237500	0.38417800	3.59149900

$0.31487200 \quad-2.19440900 \quad 1.69062200$

C

H

-7.21035700	0.66966300	-0.10960100
-7.94333300	0.06751900	-0.05504800
4.63997700	-2.80483200	-0.47206000

$4.48929400 \quad-3.73924600 \quad-0.55514500$
$\begin{array}{llll}1.85977300 & 3.85910500 & -0.29492800\end{array}$

1.10324300	4.42913800	-0.36180900
-7.41823900	2.03406100	-0.11876500
-8.30339400	2.37237700	-0.05286300
5.94089000	-2.30676800	-0.47084800
6.68451000	-2.89461600	-0.52793900
	-3.32983100	-0.20197800
-3.64547100	-0.17374000	

C	-5.03675200	-3.50246800	-0.16590400
H	-5.40171400	-4.37876400	-0.13574700
C	-0.22467400	-1.43756700	2.70698200
H	-0.87988100	-1.81299300	3.28335100
C	-5.04375300	2.47871600	-0.29550900
H	-4.31932900	3.08871100	-0.36606600
C	-6.35179700	2.92218100	-0.22039500
H	-6.52656500	3.85604600	-0.24093200
C	4.22741900	3.60925100	-0.20743100
H	5.09852900	3.98829300	-0.23145400
C	3.13246100	4.42511900	-0.28149700
H	3.23891800	5.36855100	-0.32472800

2 Supplemental Figures

2.1 Structural properties

Figure S1. The details structure of QPO.

Figure S2. The details structure of $\mathbf{Q P O}-\mathbf{P h C z}$.

2.2 Photophysical properties

Figure S3. Solvent effect on the ultraviolet-visible absorption spectra and photoluminescence spectra of QPO.

Figure S4. Solvent effect on the ultraviolet-visible absorption spectra and photoluminescence spectra of QPO-PhCz.

2.3 Theoretical calculation

Figure S5. HOMO and LUMO orbital distributions based on DFT at the B3LYP functional and $6-31 \mathrm{G}(\mathrm{d})$ basis set.

2.4 Chiroptical properties

6406 YSY-MS-1 IA 552540.7			
Sample Name:	YSY-MS-1 IA 55 254 0.7	Injection Volume:	2.0
Vial Number:	RB3	Channel:	UV_VIS_2
Sample Type:	unknown	Wavelength:	$\mathbf{2 5 4 . 0}$
Control Program:	test-dad4	Bandwidth:	$\mathbf{4}$
Quantif. Method:	20170608	Dilution Factor:	1.0000
Recording Time:	$2019-7-1014: 07$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{1 7 . 3 0}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	11.96	n.a.	145.169	91.435	48.43	n.a.	BM
2	13.23	n.a.	143.109	97.360	51.57	n.a.	MB
Total:			288.278	188.795	100.00	0.000	

Figure S6. HPLC profile of QPO.

6407 YSY-MS-1 IB 552540.7

Sample Name:	YSY-MS-1 IB 55 254 0.7	Injection Volume:	$\mathbf{2 . 0}$
Vial Number:	RB3	Channel:	UV_VIS_2
Sample Type:	unknown	Wavelength:	$\mathbf{2 5 4 . 0}$
Control Program:	test-dad4	Bandwidth:	$\mathbf{4}$
Quantif. Method:	$\mathbf{2 0 1 7 0 6 0 8}$	Dilution Factor:	$\mathbf{1 . 0 0 0 0}$
Recording Time:	$\mathbf{2 0 1 9 - 7 - 1 0 ~ 1 4 : 3 0 ~}$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{2 2 . 3 5}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	13.69	n.a.	129.969	73.607	39.43	n.a.	BM
2	14.52	n.a.	161.539	113.055	60.57	n.a.	MB
Total:			291.507	186.662	100.00	0.000	

Figure S7. HPLC profile of QPO.

6390 YSY-MS-1 IC 552540.7

Sample Name:	YSY-MS-1 IC 55 254 0.7	Injection Volume:	$\mathbf{3 . 0}$
Vial Number:	RB5	Channel:	UV_VIS_2
Sample Type:	unknown	Wavelength:	$\mathbf{2 5 4 . 0}$
Control Program:	test-dad4	Bandwidth:	$\mathbf{4}$
Quantif. Method:	$\mathbf{2 0 1 7 0 6 0 8}$	Dilution Factor:	$\mathbf{1 . 0 0 0 0}$
Recording Time:	$\mathbf{2 0 1 9 - 7 - 9 ~ 1 5 : 3 0}$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{7 6 . 0 5}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* min	Rel.Area \%	Amount	Type
1	31.34	n.a.	18.218	23.697	8.56	n.a.	BM *
2	38.40	n.a.	22.050	221.236	79.96	n.a.	M *
3	45.03	n.a.	16.987	31.759	11.48	n.a.	MB*
Total:			57.255	276.691	100.00	0.000	

Figure S8. HPLC profile of QPO.

6392 YSY-MS-1 ID3 552540.7

Sample Name:	YSY-MS-1 ID3 55 254 0.7	Injection Volume:	$\mathbf{3 . 0}$
Vial Number:	RB5	Channel:	UV_VIS_2
Sample Type:	unknown	Wavelength:	$\mathbf{2 5 4 . 0}$
Control Program:	test-dad4	Bandwidth:	$\mathbf{4}$
Quantif. Method:	$\mathbf{2 0 1 7 0 6 0 8}$	Dilution Factor:	$\mathbf{1 . 0 0 0 0}$
Recording Time:	$\mathbf{2 0 1 9 - 7 - 9 ~ 1 7 : 2 7}$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{3 0 . 2 0}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU}{ }^{*}$ min	Rel.Area \%	Amount	Type
1	16.15	n.a.	84.192	45.533	16.77	n.a.	BM *
2	20.39	n.a.	29.193	178.611	65.79	п.a.	M *
3	24.16	n.a.	59.380	47.342	17.44	n.a.	MB*
Total:			172.766	271.486	100.00	0.000	

Figure S9. HPLC profile of QPO.

6404 YSY-MS-1 IE3 552540.7

Sample Name:	YSY-MS-1 IE3 55 254 0.7	Injection Volume:	$\mathbf{2 . 0}$
Vial Number:	RB3	Channel:	UV_VIS_2
Sample Type:	unknown	Wavelength:	$\mathbf{2 5 4 . 0}$
Control Program:	test-dad4	Bandwidth:	$\mathbf{4}$
Quantif. Method:	$\mathbf{2 0 1 7 0 6 0 8}$	Dilution Factor:	$\mathbf{1 . 0 0 0 0}$
Recording Time:	$\mathbf{2 0 1 9 - 7 - 1 0 ~ 1 2 : 0 6 ~}$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{5 2 . 1 2}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	$\begin{gathered} \text { Rel.Area } \\ \% \\ \hline \end{gathered}$	Amount	Type
1	29.93	n.a.	0.010	45.901	12.07	n.a.	BM *
2	37.98	n.a.	43.273	265.028	69.71	n.a.	M *
3	46.04	n.a.	0.004	69.277	18.22	n.a.	MB*
Total:			43.287	380.206	100.00	0.000	

Figure S10. HPLC profile of QPO.

6405 YSY-MS-1 IF3 552540.7

Sample Name:	YSY-MS-1 IF3 55 254 0.7	Injection Volume:	$\mathbf{2 . 0}$
Vial Number:	RB3	Channel:	UV_VIS_2
Sample Type:	unknown	Wavelength:	$\mathbf{2 5 4 . 0}$
Control Program:	test-dad4	Bandwidth:	$\mathbf{4}$
Quantif. Method:	$\mathbf{2 0 1 7 0 6 0 8}$	Dilution Factor:	$\mathbf{1 . 0 0 0 0}$
Recording Time:	$\mathbf{2 0 1 9 - 7 - 1 0 ~ 1 3 : 1 7 ~}$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{3 8 . 3 6}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	$\begin{gathered} \hline \text { Rel.Area } \\ \% \\ \hline \end{gathered}$	Amount	Type
1	22.17	n.a.	30.711	22.934	12.08	n.a.	BM *
2	27.18	n.a.	19.230	141.342	74.43	n.a.	M *
3	31.93	n.a.	26.651	25.636	13.50	n.a.	MB*
Total:			76.591	189.911	100.00	0.000	

Figure S11. HPLC profile of QPO.

6357 YSY-MS-1 IG 552540.7

Sample Name:	YSY-MS-1 IG 55 254 0.7	Injection Volume:	$\mathbf{2 . 0}$
Vial Number:	RA4	Channel:	UV_VIS_2
Sample Type:	unknown	Wavelength:	$\mathbf{2 5 4 . 0}$
Control Program:	test-dad6	Bandwidth:	$\mathbf{4}$
Quantif. Method:	$\mathbf{2 0 1 7 0 6 0 8}$	Dilution Factor:	$\mathbf{1 . 0 0 0 0}$
Recording Time:	$\mathbf{2 0 1 9 - 7 - 5 ~ 1 2 : 2 3 ~}$	Sample Weight:	$\mathbf{1 . 0 0 0 0}$
Run Time (min):	$\mathbf{4 7 . 0 0}$	Sample Amount:	$\mathbf{1 . 0 0 0 0}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	30.90	n.a.	20.212	18.376	12.04	n.a.	$B M^{*}$
2	33.75	n.a.	27.405	110.917	72.67	n.a.	M *
3	36.29	n.a.	21.004	23.328	15.29	n.a.	MB*
Total:			68.621	152.621	100.00	0.000	

Figure S12. HPLC profile of QPO.

Figure S13. HPLC profile of QPO-PhCz.

Figure S14. HPLC profile of (M)-QPO-PhCz.

Figure S15. HPLC profile of (P)-QPO-PhCz.

2.5 Thermal properties

Figure S16. TGA/DSC curves of QPO and QPO-PhCz.

2.6 Electrochemical properties

Figure S17. CV curves of QPO and QPO-PhCz.

2.7 Electroluminescence properties

Figure S18. (a) J-V-L characteristics; (b) CE-J-PE characteristics; (c) EQE-J
characteristics and (d) EL spectra of QPO doped devices.

Figure S19. (a) J-V-L characteristics; (b) CE-J-PE characteristics; (c) EQE-J characteristics and (d) EL spectra of QPO doped devices.

Figure S20. (a) J-V-L characteristics; (b) CE-J-PE characteristics; (c) EQE-J characteristics and (d) EL spectra of QPO-PhCz doped devices.

Figure S21. (a) J-V-L characteristics; (b) CE-J-PE characteristics; (c) EQE-J
characteristics and (d) EL spectra of QPO-PhCz doped devices.
2.8 Circularly polarized electroluminescence properties

Figure S22. (a) Circularly polarized electroluminescence of (P)-QPO-PhCz/ (M)-
QPO-PhCz; (b) CPPL spectra of (P)-QPO-PhCz/ (M)-QPO-PhCz based on $\Delta \mathrm{I}$; (c) $g_{\text {EL }}$ curves of $(\boldsymbol{P})-\mathbf{Q P O}-\mathbf{P h C z} /(\mathbf{M})-\mathbf{Q P O}-\mathbf{P h C z}$.

3 Supplementary Tables

3.1 Crystal data and structure refinement

Table S1 Crystal data and structure refinement for QPO

Empirical formula	C 19 H 11 NO 3 S
Formula weight	333.35
Temperature/K	100.0
Crystal system	triclinic
Space group	$\mathrm{P}-1$
	$\mathrm{a} / \AA: 7.9427(4)$
	$\mathrm{b} / \AA: 8.2337(5)$
	$\mathrm{c} / \AA: 11.3541(7)$
	$\alpha /{ }^{\circ}: 88.5360(10)$
Unit cell dimensions	$\beta / /^{\circ}: 83.950(2)$
	$\gamma^{\circ}: 71.4370(10)$
Volume/ $\AA^{3} 399.96(7)$	
Z	2
Density/g/cm ${ }^{3}$	1.582
Absorption coefficient $/ \mathrm{mm}^{-1}$	0.250
$\mathrm{~F}(000)$	344.0
Crystal size/mm ${ }^{3}$	$0.28 \times 0.15 \times 0.12$
Theta range for data collection/ ${ }^{\circ}$	5.22 to 55.106
	$-10 \leq \mathrm{h} \leq 8$
Index ranges	$-10 \leq \mathrm{k} \leq 10$
	$-14 \leq 1 \leq 14$
Reflections collected	8610
Independent reflections	$3200\left[\mathrm{R}_{\text {int }}=0.0400, \mathrm{R}_{\text {sigma }}=0.0509\right]$
Data/restraints/parameters	$3200 / 0 / 217$
Goodness-of-fit on F^{2}	1.023
Final R indices [I>2sigma(I) $]$	$\mathrm{R}_{1}=0.0446, \mathrm{wR}_{2}=0.1038$
R indices (all data)	$\mathrm{R}_{1}=0.0615, \mathrm{wR}_{2}=0.1166$
Largest diff. peak and hole	$0.34 /-0.53$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
CCDC number	2051469

Table S2 Crystal data and structure refinement for $\mathbf{Q P O}-\mathbf{P h C z}$

Empirical formula	C37H22N2O3S		
$\mathbf{S 3 3}$			

Formula weight	574.62
Temperature/K	173.0
Crystal system	triclinic
Space group	$\mathrm{P}-1$
	$\mathrm{a} / \AA: 9.2936(6)$
	$\mathrm{b} / \AA: 10.7266(7)$
	$\mathrm{c} / \AA \AA: 13.7992(10)$
	$\alpha /{ }^{\circ}: 92.415(2)$
	$\beta / /^{\circ}: 98.846(2)$
Unit cell dimensions	$\gamma^{/}: 104.956(2)$
	$1308.38(15)$
Volume/ \AA^{3}	2
Z	1.459
Density/g/cm ${ }^{3}$	0.169
Absorption coefficient/mm ${ }^{-1}$	596.0
$\mathrm{~F}(000)$	$0.15 \times 0.11 \times 0.08$
Crystal size/mm ${ }^{3}$	4.604 to 52.77
Theta range for data collection/ ${ }^{\circ}$	$-11 \leq \mathrm{h} \leq 11$
	$-13 \leq \mathrm{k} \leq 12$
Index ranges	$-17 \leq 1 \leq 17$
Reflections collected	14836
Independent reflections	$5302\left[\mathrm{R}_{\text {int }}=0.0474, \mathrm{R}_{\text {sigma }}=0.0604\right]$
Data/restraints/parameters	$5302 / 0 / 388$
Goodness-of-fit on F^{2}	1.080
Final R indices $[\mathrm{I}>2$ sigma $(\mathrm{I})]$	$\mathrm{R}_{1}=0.0559, \mathrm{wR}_{2}=0.1287$
R indices (all data $)$	$\mathrm{R}_{1}=0.0873, \mathrm{wR}_{2}=0.1478$
Largest diff. peak and hole	$0.35 /-0.49$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
CCDC number	2051470

3.2 Electroluminescence characteristics

Table S3. Electroluminescence characteristics of the QPO and $\mathbf{Q P O}-\mathbf{P h C z}$ doped devices at different dopant concentrations.

Device	Dopant ratio	$\eta_{\mathrm{CE}}{ }^{a}$	$\eta_{\mathrm{PE}}{ }^{a}$	EQE ${ }^{a}$	Peak aveleng	CIE
		$\left(\mathrm{cd} \mathrm{A}{ }^{-1}\right)$	$\left(\mathrm{lm} \mathrm{W}{ }^{-1}\right)$	(\%)	(nm)	(x,y)
QPO	$5 \mathrm{wt} \%$	1.5	0.6	2.5	444	$(0.16,0.07)$
	$10 \mathrm{wt} \mathrm{\%}$	1.6	0.8	1.6	448	$(0.16,0.11)$
	$15 \mathrm{wt} \%$	2.6	1.5	2.0	448	(0.16.0.15)
	$18 \mathrm{wt} \%$	3.2	2.7	2.4	448	$(0.16,0.11)$
	$20 \mathrm{wt} \%$	3.5	2.2	2.3	448	$(0.17,0.19)$
	21 wt\%	3.3	2.8	2.1	448	$(0.16,0.11)$
	24 wt\%	2.0	1.7	1.5	448	(0.16.0.13)
$\begin{aligned} & \text { QPO- } \\ & \text { PhCz } \end{aligned}$	$5 \mathrm{wt} \%$	14.5	16.0	7.4	476	$(0.18,0.28)$
	$10 \mathrm{wt} \%$	17.0	12.0	8.8	476	$(0.18,0.29)$
	15 wt\%	20.0	15.4	9.4	476	(0.18, 0.28)
	$18 \mathrm{wt} \%$	25.0	30.5	10.6	488	(0.17, 0.34$)$
	20 wt\%	20.5	17.2	9.2	492	(0.20.0.36)
	21 wt\%	22.0	19.3	9.2	492	(0.20.0.36)
	24 wt\%	22.0	20.0	8.6	500	$(0.21,0.39)$

${ }^{a}$ Efficiencies in the order of the maxima. ${ }^{b}$ Measured at $5 \mathrm{~mA} \mathrm{~cm}^{-2}$.

4 Copy of NMR Spectra and MALDI-TOF-MS Plot

4.1 ${ }^{1} \mathrm{H}$ NMR plot of $\mathbf{2}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4.2 ${ }^{13} \mathrm{C}$ NMR plot of $\mathbf{2}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4.3 ${ }^{1} \mathrm{H}$ NMR plot of $\mathbf{3}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4.4 ${ }^{13} \mathrm{C}$ NMR plot of $\mathbf{3}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{llllllllllllllllll}145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 \\ p p 10\end{array}$
4.5 ${ }^{1} \mathrm{H}$ NMR plot of $\mathbf{Q P O}, 400 \mathrm{MHz}$, DMSO

$4.6{ }^{13} \mathrm{C}$ NMR plot of $\mathbf{Q P O}, 101 \mathrm{MHz}$, DMSO

4.7 ${ }^{1} \mathrm{H}$ NMR plot of $\mathbf{5}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4.8 ${ }^{13} \mathrm{C}$ NMR plot of $\mathbf{5}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$4.9{ }^{1} \mathrm{H}$ NMR plot of $\mathbf{6}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$4.10{ }^{13} \mathrm{C}$ NMR plot of $\mathbf{6}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4.11 ${ }^{1} \mathrm{H}$ NMR plot of QPO-Br, 400 MHz , DMSO

$4.12{ }^{13} \mathrm{C}$ NMR plot of QPO-Br, 101 MHz , DMSO

4.13 ${ }^{1} \mathrm{H}$ NMR plot of $\mathbf{Q P O}-\mathbf{P h C z}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$4.14{ }^{13} \mathrm{C}$ NMR plot of $\mathbf{Q P O}-\mathbf{P h C z}, 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4.15 MALDI-TOF-MS plot of QPO

4.16 MALDI-TOF-MS plot of QPO-Br

4.17 MALDI-TOF-MS plot of QPO-PhCz

5 References

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.

Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.

Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R.

Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.

Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.

Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013, Gaussian 09, Revision E. 01.
[2] Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
[3] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785-789.
[4] Lu, T.; Chen, F. J. Comput. Chem., 2012, 33, 580-592.
[5] (a) Johnson, E. R.; Keinan, S.; Sanchez, P. M.; Garcıa, J. C.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498-6506; (b) Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J. C.; Garcia, J. C.; Henon, E. Phys. Chem. Chem. Phys., 2017, 19, 1792817936.
[6] Humphrey, W.; Dalke, A.; Schulten, K. J. Mole. Graph., 1996, 14, 33-38.

