Supplementary Information for

Matrix Effects on the Performance and Mechanism of Hg Removal from Groundwater by MoS₂ Nanosheets

Mengxia Wang^a, Qi Han,^a Yufei Shu,^a Kunkun Wang,^a Li Wang,^a

Bei Liu,^a Ines Zucker,^b and Zhongying Wang^{a*}

^a State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering Southern University of Science and Technology, Shenzhen 518055, China

^b Porter School of Environmental Studies and School of Mechanical Engineering,

Tel Aviv University, 69978, Israel

^{*} to whom correspondence should be addressed. e-mail: <u>wangzy6@sustech.edu.cn</u>; tel.: +86-075588018040;

Supplementary	Contents	Page number
Table S1	The corresponding fitting parameters of kinetic models	5
Table S2	The corresponding fitting parameters of isotherm models	5
Table S3	The Hg removal capacities of different materials	5
Figure S1	Schematic illustration of the chemical exfoliation of bulk MoS_2	6
Figure S2	Particle size distribution of as-exfoliated MoS2 nanosheets	6
Figure S3	S 2p XPS spectra of as-prepared MoS_2 nanosheets	6
Figure S4	Hg uptake kinetics by MoS ₂ nanosheets in groundwater	7
Figure S5	Fitting of Hg uptake kinetics by MoS ₂ nanosheets	7
Figure S6	Determination of MoO ₄ ²⁻ in solution by Ion Chromatography.	8
Figure S7	Ca^{2+} and Mg^{2+} uptake by MoS_2 nanosheets	8
Figure S8	The XPS survey scan spectra of Hg-laden MoS_2	9
	TEM images and EDS-mapping of Hg-laden MoS_2 nanosheets	0
Figure S9	formed in groundwater.	9
Figure S10	TEM images and EDS-mapping of Hg-laden MoS ₂ nanosheets	10
	formed in DI water.	10
Figure S11	Mass distribution of Mo in (a) groundwater and (b) DI water.	10
Figure S12	Oxidation of MoS ₂ in presence of Cl ⁻ at various concentrations	11
Figure S13	The percentage of Hg species in simulated groundwater at pH 8	11
Figure S14	Effects of pH on Hg removal efficiency by MoS_2	12
Figure S15	Hg uptake by AC in the groundwater	12

Table of Contents

Materials

All chemicals used in this study were of analytical grade or higher. Sodium sulfate (Na₂SO₄) and sodium bicarbonate (NaHCO₃) were obtained from Linfeng Chemical Reagent Technology (Shanghai, China). Mercury nitrate (Hg(NO₃)₂·H₂O) was purchased from Macklin Chemical Reagent Technology (Shanghai, China). Calcium chloride anhydrous (CaCl₂) and sodium chloride (NaCl) were obtained from Guoyao Chemical Reagent Corporation (Shanghai, China).

Sorption kinetic and isotherm models

The commonly used pseudo-first-order (Eq. (1)) and pseudo-second-order (Eq. (2)) kinetic models were employed to evaluate the controlling of kinetic mechanism of adsorption process, and the relative model equations are presented in the following:¹

$$In(q_e - q_t) = Inq_e - K_1 t \tag{1}$$

$$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e}$$
(2)

where q_t and q_e (mg/g) represent the Hg uptake at time t (h) and equilibrium, respectively; K_1 and K_2 are pseudo-first-order and pseudo-second-order sorption rate constants, respectively.

The isotherm data was fitted with the classical Langmuir (Eq. (3)) model and Freundlich model (Eq. (4)):

$$q_e = \frac{q_m K_L C_e}{1 + K_L C_e} \tag{3}$$

$$q_e = K_F C_e^{\frac{1}{n}} \tag{4}$$

where $q_e \text{ (mg/g)}$ and $C_e \text{ (mg/L)}$ are the equilibrium Hg uptake and the equilibrium Hg concentration, $q_m \text{ (mg/g)}$ is the monolayer maximum sorption capacity, and $K_L \text{ (L/mg)}$ is the Langmuir affinity constant. K_F is the Freundlich affinity coefficient $[(\text{mg/g})/(\text{mg/L})^n]$, and *n* is the exponential coefficient.

Desorption tests

Before leaching tests, the Hg-laden MoS₂ and AC samples were prepared by adding 20 mg/L Hg(II) with either 8 mg/L MoS₂ nanosheets or 1.67 g/L activated carbon. The Hg removal efficiency by MoS₂ nanosheets and AC were above 97%, indicating nearly complete anchoring of Hg ions by MoS₂ and AC. Desorption tests were performed by monitoring the Hg release from Hg-laden MoS₂ and AC samples in 20 mL simulated groundwater, 20 mL acid solution (0.23 mM H₂SO₄ and 0.17 mM HNO₃), or 20 mL 1 mM EDTA solution. The mixture of solution of H₂SO₄ and HNO₃ was prepared at a mass radio of 2:1 in DI water (pH = 3.2 ± 0.1) to simulate the condition in which the samples are exposed to acidic rain (HJ/T 299-2007, China).² In all cases, the vials were sealed and continuously mixed on an end-over-end rotator at 60 rpm at room temperature (25±1 °C) for 1 d, 2 d, 4 d, and 7 d. The samples were filtered through the 0.22 µm PTFE filters and analyzed for Hg concentrations in the filtrates.

Kinetic models		Parameters		<i>R</i> ²
Pseudo-first-order	<i>K</i> ₁ (h ⁻¹) 0.97±0.12	$q_e ({ m mg/g})$ 50.91±1.18	$h_1 = K_1 q_e (\text{mg/(g•h)})$ 49.38	0.9698
Davida sacand order	$K_2 \left(g/(\mathrm{mg} \bullet \mathrm{h}) \right)$	$q_e ({ m mg/g})$	$h_2 = K_2 q_e^2 (\mathrm{mg}/(\mathrm{g} \cdot \mathrm{h}))$	0.0000

Pseudo-second-order

Table S1. Pseudo-first-order and pseudo-second-order models for simulating Hg sorption kinetics and the corresponding fitting parameters.

Table S2. Regression parameters of sorption isotherm data of Hg(II) onto MoS₂ nanosheets by Langmuir and Freundlich models.

 1250 ± 0.63

 0.075 ± 0.01

0.9999

117187.5

Water bodies	Adsorption isotherm	Parameters		R ²
Groundwater -	Langmuir	$q_m (mg/g)$ 6288	<i>b</i> (L/mg) 1.82	0.9801
	Freundlich	K_F , (mg/g)/(mg/L) ⁿ 3494.11	<i>n</i> 0.23	0.9145
DI Water -	Langmuir	q_m (mg/g) 4042.85	<i>b</i> (L/mg) 0.41	0.9592
	Freundlich	K_F , (mg/g)/(mg/L) ⁿ 1893.86	<i>n</i> 0.21	0.9883

Table S3. Comparison of the Hg removal capacities of different materials.

Adsorbent	Material Type	Capacity (mg/g)	Reference
Other Materials	FeS	3086.4	3
	Indium-modified ZVI	220.9	4
	Biochar	57.8	5
	SnS_2	185.83	6
	GO	255.1	6
	SGO/Fe-Mn	233.17	7
	Multilayered Ti ₃ C ₂ Ox Mxene	4806	8
MoS ₂ -based Materials	d-MoS ₂ /Fe ₃ O ₄	425.5	9
	MoS ₂ -HNR	~1991	10
	Petal-like MoS ₂	289	11
	\Box P-PVDF/MoS ₂	578	12
	MoS ₂ /MMT	1836	13
	$2D-MoS_2$	6288	Our work

Figure S1. Schematic illustration of the chemical exfoliation of bulk MoS₂.

Figure S2. Particle size distribution of as-exfoliated MoS_2 nanosheets measured by dynamic light scattering.

Figure S3. XPS S 2p spectra of as-prepared MoS_2 nanosheets.

Figure S4. Hg uptake kinetics by MoS₂ nanosheets in groundwater.

Figure S5. Hg uptake kinetics by MoS_2 nanosheets fitted with (a) pseudo-first-order model and (b) pseudo-second-order model.

Figure S6. Determination of MoO_4^{2-} in solution by Ion Chromatography. (a) Chromatograms of different concentration of MoO_4^{2-} by the addition of sodium molybdate. (b) Linear relationship between MoO_4^{2-} concentration and peak area. (c) Ion Chromatograms of soluble Mo species after the reactions of Hg with MoS_2 at various concentrations. The concentrations of MoO_4^{2-} determined by ICP-OES and IC exhibited a good agreement (the inserted table).

Figure S7. The ratios of the remaining to the initial concentrations of Ca^{2+} (a) and Mg^{2+} (b) in the presence of MoS_2 nanosheets.

Figure S8. The XPS survey scan spectra of Hg-laden MoS_2 formed in DI water and Groundwater.

Figure S9. TEM images and EDS-mapping of Hg-laden MoS_2 nanosheets in groundwater.

Figure S10. TEM images and EDS-mapping of Hg-laden MoS_2 nanosheets in DI water.

Figure S11. Mass distributions of Mo species in (a) DI water and (b) groundwater.

Figure S12. Oxidation of MoS₂ nanosheets in presence of Cl⁻ at various concentrations.

Figure S13. The percentage of Hg species in simulated groundwater using Visual MINTEQ (version 3.1) at pH = 8.0.

Figure S14. (a) Effects of pH on Hg removal efficiency by MoS_2 , Hg = 20 mg/L, $MoS_2 = 4$ mg/L. (b) Hg speciation as a function of pH determined by Visual MINTEQ.

Figure S15. Hg uptake by AC in the groundwater. The mass of AC is 0–0.15 g, Hg concentration is 20 mg/L.

Reference

- 1 Y. Huang, S. Xia, J. Lyu and J. Tang, Highly efficient removal of aqueous Hg^{2+} and CH_3Hg^+ by selective modification of biochar with 3-mercaptopropyltrimethoxysilane, *Chem. Eng. J.*, 2019, **360**, 1646-1655.
- 2 Y. Huang, M. Wang, Z. Li, Y. Gong and E. Y. Zeng, In situ remediation of mercurycontaminated soil using thiol-functionalized graphene oxide/Fe-Mn composite, *J. Hazard. Mater.*, 2019, **373**, 783-790.
- 3 M. Wang, Y. Li, D. Zhao, L. Zhuang, G. Yang and Y. Gong, Immobilization of mercury by iron sulfide nanoparticles alters mercury speciation and microbial methylation in contaminated groundwater, *Chem. Eng. J.*, 2020, **381**, 122664.
- 4 G. H. Qasim, S. Lee, W. Lee and S. Han, Reduction and removal of aqueous Hg(II) using indium-modified zero-valent iron particles, *Appl. Catal B: Environ.*, 2020, **277**, 119198.
- 5 J. H. Park, J. J. Wang, B. Zhou, J. E. R. Mikhael and R. D. DeLaune, Removing mercury

from aqueous solution using sulfurized biochar and associated mechanisms, *Environ. Pollut.*, 2019, **244**, 627-635.

- 6 E. Rathore and K. Biswas, Selective and ppb level removal of Hg(II) from water: synergistic role of graphene oxide and SnS₂, *J. Mater. Chem. A.*, 2018, **6**, 13142-13152.
- 7 Y. Huang, Y. Gong, J. Tang and S. Xia, Effective removal of inorganic mercury and methylmercury from aqueous solution using novel thiol-functionalized graphene oxide/Fe-Mn composite, *J. Hazard. Mater.*, 2019, **366**, 130-139.
- K. Fu, X. Liu, D. Yu, J. Luo, Z. Wang and J. C. Crittenden, Highly Efficient and Selective Hg(II) Removal from Water Using Multilayered Ti₃C₂O_x MXene via Adsorption Coupled with Catalytic Reduction Mechanism, *Environ. Sci. Technol.*, 2020, 54, 16212-16220.
- 9 Y. Song, M. Lu, B. Huang, D. Wang, G. Wang and L. Zhou, Decoration of defective MoS₂ nanosheets with Fe₃O₄ nanoparticles as superior magnetic adsorbent for highly selective and efficient mercury ions (Hg²⁺) removal, *J. Alloys. Compds.*, 2018, 737, 113-121.
- 10 A. N. Jayadharan Salini, A. Ramachandran, S. Sadasivakurup and S. K. Yesodha, Versatile MoS₂ hollow nanoroses for a quick-witted removal of Hg (II), Pb (II) and Ag (I) from water and the mechanism: Affinity or Electrochemistry?, *Appl. Mater. Today.*, 2020, **20**, 100642.
- 11 R. Pirarath, P. Shivashanmugam, A. Syed, A. M. Elgorban, S. Anandan and M. Ashokkumar, Mercury removal from aqueous solution using petal-like MoS₂ nanosheets, *Front. Environ. Sci. Eng.*, 2021, 15.
- 12 X. Zhao, J. Li, S. Mu, W. He, D. Zhang, X. Wu, C. Wang and H. Zeng, Efficient removal of mercury ions with MoS₂-nanosheet-decorated PVDF composite adsorption membrane, *Environ. Pollut.*, 2021, 268, 115705.
- 13 E. D. A. Mário, C. Liu, C. I. Ezugwu, S. Mao, F. Jia and S. Song, Molybdenum disulfide/montmorillonite composite as a highly efficient adsorbent for mercury removal from wastewater, *Appl Clay Sci.*, 2020, **184**, 105370.