SUPPORTING INFORMATION

New insight into the biodegradability of Complex Mixtures. UHPLC-qToF "all-ion MS/MS" acquisition technique to the Untargeted Metabolite Fingerprint and Targeted Analysis

Luisa Mattoli, Giacomo Proietti, Claudio Marzio Quintiero, Giada Fodaroni, Michela Burico, Mattia Gianni, Emiliano Giovagnoni, Valentino Mercati, Claudio Santi*

Table S1: Semi-quantitative evaluation of sucralose 1, maltitol 2 and Bromhexine 3	2
Table S2: List of the main compounds studied in Mixture A and Mixture B	3
Table S3. List of Bromhexine metabolites	4
Figure S1: Mixture A, Bromhexine metabolites at T28_ 2- and 3- and 4-[(2-Amino-3,5-dibromobenzyl)amino]cyclohexanol	5
Figure S1A: Ambroxol	6
Figure S2: Mixture_A, Bromhexine metabolites at T28_(2-amino-3,5-dibromo-benzyl)-cyclohexyl-amine	7
Figure S3 Mixture_A, Bromhexine metabolite at T28_2- and 3- and 4-[(2-amino-3,5-dibromobenzyl)-(methyl)-amino]-cyclohexanol	8
Figure S4 Mixture_A, Bromhexine metabolite at T28_2- and 3- and 4-[(2-amino-3,5-dibromobenzyl)-(methyl)-amino]-cyclohexenol	9
Figure S5 Mixture_A, Bromhexine metabolite at T28_2,4-dibromo-6-((cyclohex-2-en-1-yl-(methyl)-amino)-methyl)-aniline	10
Table S4. Experimental parameters for the respirometric test	11
Table S5. UHPLC ESI-qToF Methods: Elution gradient	11
Table S6. UHPLC ESI-qToF Methods: MS parameters	11
Table S7. Statistical Model performance evaluation by means of Q^2 and R^2X	11
Table S8: Hotelling T ² and DModX	12
Figure S6 Spectrum of Structure 7	13
Figure S7 Spectrum of Structures 7a	13
Figure S8 Spectrum of Structure 8	14
Figure S9 Spectrum of Structures 9	14
Figure S10 Spectrum of Structures 10	15
Figure S11 Spectrum of Structure 11	16

Table S1: Semi-quantitative evaluation of sucralose **1**, maltitol **2** and Bromhexine **3** by Relative Ratio (RR) estimation and calculation of the reduction percentage ^b

Concentration	Sucralose (1)	Maltitol (2)	Bromhexine (3)
50 mg/L	RR at T0 0.049	RR at T0 2.801	RR at T0 0.064
	RR at T28 0.052	RR at T28 0.000	RR at T28 0.004
	No % reduction	100% reduction	94 % reduction
100 mg/L	RR at T0 0.100	RR at T0 4.932	RR at T0 0.102
	RR at T28 0.099	RR at T28 0.000	RR at T28 0.012
	0.56 % reduction	100 % reduction	88 % reduction
1000 mg/L	RR at T0 0.468	RR at T0 7.049	RR at T0 0.432
	RR at T28 0.483	RR at T28 4.344	RR at T28 0.054
	No % reduction	38 % reduction	88 % reduction
Bromhexine			RR at T0 17.826
0.7mg/L			RR at T28 9.542
			46 % reduction

^b The Relative Ratio (RR) is the ratio between the area counts of the compound and the area count of the internal standard (sulfadimethoxine-d6). The level of reduction at the end of the experiment is the ratio between the RR at T28 and the RR at T0 as a percentage.

Table S2. List of the main compounds studied in Mixture_A and Mixture_B												
N°	Compounds	Structure/ elemental formula	Retention time (min)	Type of ionization	Calculated Mass [M-X] ⁻ or [M+X] ⁺ (m/z) (i)	Accurate Mass [M- X] ⁻ or [M+X]* (m/z) (ii)	Error (mDa) (a)	Score% (b)	Calculated mass- Fragment (m/z) (c)	Accurate mass- Fragment (m/z) (c)	Level of compound XXXdentificatio n (d)	Products studied
1	Sucralose		4,509	Pos	419,0038 [M+Na] ⁺	419,0045 [M+Na]+	7	98.9	238,9848*	238,9846* (CE30eV)	Level 1	Mixture_A
2	Maltitol	HO HO HO HOH	0,772	Pos	367,1211 [M+Na] ⁺	367,1218 [M+Na] ⁺	7	96.0	205,0683	205,0685 (CE30eV)	Level 1	Mixture_A
3	Bromhexine	Br Br C14H20Br2N2	9,655	Pos	377,0046 [M+H+2]*	377,0048 [M+H+2]⁺	2	98.2	263,8841* 114,1277	263,8843* 114,1280 (CE30eV)	Level 1	Mixture _A
4	Sucrose	$ \underset{HO}{\overset{OH}{\longrightarrow}} \underset{OH}{\overset{OH}{\longrightarrow}} \underset{OH}{\overset{OH}{\longrightarrow}} \underset{OH}{\overset{OH}{\longrightarrow}} $	0,922	Neg	341,1089 [M-H] ⁻	341,1092 [M-H] ⁻	3	89.3	185.0415, 203.0518	185,0415* 203,0518 (CE30eV)	Level 1	Mixture _B
5	Acteoside (syn. Verbascoside)		6,508	Neg	623,1981 [М-Н] [.]	623,1981 [М-Н] [.]	0	79.9	161,0243 461,1664*	161,0243 461,1658* (CE30eV)	Level 1	Mixture _B
6	Grindelic Acid	СООН	18,898	Neg	319,2279 [M-H] ⁻	319,2281 [M-H]-	2	83.3	205,1596*	205,1596* (CE30eV)	Level 1	Mixture _B

(a)Mass Difference between calculated mass or exact mass and the experimental value; (b) The reported value is the overall score to which contribute: the mass score, the isotope abundance score, the isotope spacing score and the retention time score; (c) Bold more abundant ions, asterisk qualifier ions. (d) Classification according to Sumner et al. ¹Level 1- validate identification with pure reference standard, Level 2- Putative identified compound MS/MS data match with the literature, Level 3- tentative structure identification match with the molecular formula; i) Mono isotopic mass of the most abundant ion of the isotopic cluster (ii) Accurate mass Value of the most abundant ion of the isotopic cluster

¹ Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007; 3: 211-221.

	Table S3. List of Bromhexine metabolites									
N°	Compound Name	Retenti on time (min)	Putative Structure/ elemental formula	Type of ionization	Calculated Mass [M-X] ⁻ or [M+X] ⁺ m/z (ii)	Accurate Mass [M- X] ⁻ or [M+X]* (m/z) (iii)	Error (mDa) (a)	Calculated Mass m/z (c)	Accurate mass- Fragment m/z (c)	Level of compound identification (d)
7	Ambroxol (E-4-HDMB)	6,146	Br H Br H Br H CH CH CH CH CH CH CH CH CH	Pos	378,9839 [M+H+2]⁺	378,9836 [M+H+2]*	-3	263,8841 116,1074	263,8841 * 116,1069	Level 1
7°	[(2-amino-3,5 dibromobenzyl)-amino]- cyclohexanol (Other Ambroxol isomers with OH in different position on amino cyclohexane ring)	6,738; 7,094	Br H Br NH ₂ C13H18Br2N2O	Pos	378,9839 [M+H+2]⁺	378,9836 378,9833 [M+H+2]*	-3 -6	263,8841 116,1074	263,8841* 116,1069 263,8842* 116,1068 (CE30eV)	Level 2
8	(2-amino-3,5-dibromo-benzyl)-cyclohexyl- amine	9,633	Br NH2 Br C13H18Br2N2	Pos	362,9889 [M+H+2]⁺	362,9892 [M+H+2] ⁺	3	263,8841 100,1121	263,8841 * 110,1119 (CE30eV)	Level 3
9	[(2-amino-3,5-dibromobenzyl)-(methyl)- amino]-cyclohexanol, (Different isomers with OH in different position on amino cyclohexane ring)	6,061; 6,924; 10,191	Br Ho Br NH2 C14H20Br2N2O	Pos	392,9995 [M+H+2]†	392,9996 392,9998 393,0003 [M+H+2]*	1 3 8	263,8841 130,1226	263,88342* 130,1226 263,8839* 130,1227 263,8844* 130,1228 (CE30eV)	Level 3
10	[(2-amino-3,5-dibromobenzyl)-(methyl)- amino]-cyclohexenol, (different isomers with OH in different position on the cyclohexane ring; a double bond in the cyclohexane ring in not defined position)	6,315; 6,738; 9,108	Br Br NH2 C14H18Br2N2O	Pos	390,9839 [M+H+2]⁺	390,9840 390,9843 390,9840 [[M+H+2]*	1 4 1	263,8841 128,1070	263,8847* 128,1067 263,8841* 128,1068 263,8839* 128,1068 (CE30eV)	Level 3
11	2,4-dibromo-6-((cyclohex-2-en-1-yl- (methyl)-amino)-methyl)-aniline (double bond in the cyclohexane ring position not defined)	9,430	Br NH2 Br C14H18Br2N2	Pos	374,9890 [M+H+2]+	374,9890 [M+H+2]*	0	263,8841 112,1121	263,8839* 112,1123 (CE30eV)	Level 3

iii) Normalized value obtained by the ratio of the area of the compound to the area of the internal standard.

Figure S1 Mixture_A: Bromhexine metabolites at T28_2- and 3- and 4-[(2-Amino-3,5-dibromobenzyl)amino]cyclohexanol_EIC of the molecular ion at m/z 378.9839 (green line, [[M+H+2]⁺), and its fragments EICs at m/z 263.8841(30eV, light green line) and m/z 116.1070 (violet line). Different signals can be observed as consequence of microfauna hydroxylation on different position of amino-cyclohexane ring. Ambroxol or trans-4-[(2-Amino-3,5-dibromobenzyl)amino]cyclohexanol (7) can be easily identified at 6.146 minutes by comparison with the retention time, accurate mass and accurate MS/MS fragments of the reference pure standard (see Figure S1A)

at m/z 263.8841(30eV, green line), and m/z 116.1070 (30eV, blue line).

the molecular ion at m/z 392.9995 (brown line, $[M+H+2]^+$), and its fragments EICs at m/z 263.8841(30eV, light green line) and m/z 130.1226 (30eV, red line). Different signals can be observed as consequence of microfauna hydroxylation on different position of amino-cyclohexane ring.

Figure S4 Mixture_A: Bromhexine metabolite at T28_ **2- and 3- and 4-[(2-amino-3,5-dibromobenzyl)-(methyl)-amino]-cyclohexenol (10)_**EIC of the molecular ion at m/z 390.9839 (violet line, [M+H+2]⁺), and its fragments EICs at m/z 263.8841(30eV, light green line) and m/z 128.1070 (30eV, grey line). Different signals can be observed as consequence of microfauna hydroxylation and double bond formation on different position of amino-cyclohexane ring.

Figure S5 Mixture_A: Bromhexine metabolite at T28_**2,4-dibromo-6-((cyclohex-2-en-1-yl-(methyl)-amino)-methyl)-aniline (11)_**EIC of the molecular ion at m/z 374.9890 (blue line, [M+H+2]⁺), and its fragments EICs at m/z 263.8841(30eV, light green line) and m/z 112.1121 (30eV, orange line). Double bond in the cyclohexane ring position was not defined. Different signals in the EIC chromatogram of the fragment ion at m/z 263.8841 can be observed as the fragment is common to other bromhexine metabolites. Potentially, several metabolites with a double bond in the amino-cyclohexane ring not well separated under the same chromatographic peak can be presents.

Table 34. Experimental parameters for the respirometric test
Table S4 Experimental parameters for the respiremetric test

Sample concentration	Volume of mineral media	Volume of the vessel			
50 mg/L	400 ml	1L			
100 mg/L	400 ml	1L			
1 g/L	100 ml	1L			

Table S5.	<u> ПНРІ С</u>	ESI-aToF
Table 35.	UNFLC	LJI-YIUF

Methods: Elution gradient

0		
Time (min)	A%	B%
0,0	99	1
1,0	99	1
2,0	75	25
10,0	50	50
11,0	50	50
15,0	25	75
17,0	15	85
19,0	1	99
19,5	1	99
21,0	99	1
24,0 (post run)	99	1

Table S6. UHPLC ESI- qToF Methods: MS parameters

Instrumental parameters	ESI-	ESI+
Gas temperature (°C)	325	325
Gas flow (L min-1)	11	11
Nebulizer (psig)	35	35
Sheat gas temperature (°C)	350	350
Sheat gas flow (L min-1)	12	12
Vcap	3500	3500
Nozzle voltage (V)	0	1000
Fragmentor	100	100
Skimmer	65	65
Octopole RF Peak	750	750

Table S7. Statistical Mode	performance evaluation b	y means of Q ² and R ² X,
----------------------------	--------------------------	---

Sample	Q ²	R ² X
Mixture_A 100 mg/L	0,849	0,937
Mixture_B 100 mg/L	0,818	0,953
Mixture_A 1000 mg/L	0,669	0,937
Mixture_B 1000 mg/L	0,864	0,989

Figure S10 Spectrum of Structure 10_[(2-amino-3,5-dibromobenzyl)-(methyl)-amino]-cyclohexenol, (different isomers with OH in ortho, meta or para position and a double bond in the cyclohexane ring in position not defined).

Figure S11 Spectrum of Structure 11_2,4-dibromo-6-((cyclohex-2-en-1-yl-(methyl)-amino)-methyl)-aniline (double bond in the cyclohexane ring position not defined). Accurate mass spectrum at m/z 374,9890 and 9.430 min (right) then the corresponding MS/MS fragmentation pattern at 30eV (left) with ions at m/z 263,8839 and 112,1123