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Figure S1. XRD pattern of as prepared K4Nb¢O;7 indexed to JCPDS, No. 76-0977.
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Figure S2. N, adsorption-desorption isotherms and BJH pore size distribution of the samples.

Table 1: BET surface areas and pore volume of the samples.

Sample S,cr (m?/g) Po::,:?/l:)me
H4Nbso17 26.0 0.15
eCN, 139.0 0.89
H4N bGO17 (ann.) 104 0.43
f)‘(l)%lelflazoaoi g_C?'N“/I_|4Nb6017 (‘10;L H,NbgO,; (ann) 100.4 0.44 S3. Zeta

measurement for HyNbeO,; (ann) and’g-CN,,
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The Kubdlka-Munk plot in
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where a i$ the absorption (coefficient, /4 is Planck’s constant, v is the photon energy, A is a

proportiohality constant, andn is = 1 for direct|transition and =4 for indirect transition of the
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igure S2 shows the X axis band gap energy, E,, and Y axis (ahv)?,
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Figure S4. Kubelka-Munk plot of the samples calculated from the UV-vis data shown in Figure
4.
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Figure S5. UV-vis spectra of H4NbsO,7 annealed at different temperatures
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Figure S7. . Recycling ability for H,0, production for g-C3sN4 and H4NbgO17 (ann)/ g-CsN4 composite

Sample shows a mass loss between 250 and 570 °C of ~7%, which can be ascribed to loss of
incorporated organic material. Above this inflexion point decomposition is observed.
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Figure S8. VB-XPS spectra of g-C;N, and the annealed H;NbgO.
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Figure S9. VB-XPS spectra of VB-XPS of HyNbsO,; (ann)/ g-C;N,.
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Figure S10. EPR spectra of -O," radicals with irradiation for 2 min in methanol.

ESI Section 2: Composite optimization

XRD:
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Figure S11. XRD patterns of g-C3N4/H4NbsO;7 composites (a) before and after annealing at (b)
300°C, (c) 400°C, (d) 500°C and (e) 600°C.
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When surveying the diffraction pattern of g-C3N4/H4NbsO;7 (1:2) composite, it was found that
the diffraction peaks were mostly ascribed to the crystalline structure of exfoliated H4NbsO,7



(Figure S11 a). The failure in observing the characteristic peaks of g-C;N, can be justified by the
relatively lower degree of crystallinity and lower content of g-C;Ny in the mass ratio under study.
However, crystallographic analyses proved to be useful in investigating the impact of the
annealing treatment, carried out to potentially induce useful chemo-physical alterations (Figure
S11 b-e). The diffraction peaks of the composite were preserved in the annealed samples,
indicating that annealing at temperatures in the range between 300°C to 600°C did not destroy
the g-C3;N4/H4NbgO 7 heterostructure. Moreover, higher annealing temperatures (above 500°C)
were responsible for the detection of two new peaks at around 28.5° and 36.5°, which could be
ascribed to a considerable physical change.

FTIR and UV-Vis:
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Figure S12. IR spectra of the composite annealed at different temperatures.

The samples annealed at temperatures between 250°C and 450°C share the same spectrum of the
pre-annealed composite without any distinct dissimilarities, as shown in Figure S12. Meanwhile,
in the spectra of the samples annealed at temperatures above 500°C, the characteristic bands of
g-C3N, are missing. This can be explained by the inferior thermal stability of g-C;Ny4, and
H4NbsO,7 dominating the physical features and properties of the composite. The sudden

alteration in the compositional proportions is consistent with the conclusions drawn from the
previous XRD.
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Figure S13. UV-vis spectra of HyNbsO,7 annealed at different temperatures.

In Figure S13, the UV-vis spectra of the annealed composites suggest that a heating treatment
within 450°C does not affect the optical properties of the material. However, above 500°C the
absorption edge shifts towards shorter wavelengths closer to the pristine HyNbsO,7. As supported
by TEM images, the phenomenon observed is connected to the quantum confinement effect, in
which a decrease in the nanoparticle size leads to wider bandgaps.

TEM:

From the TEM images in Figure S14, we can see the effect of heating on the composite,
particularly that higher annealing temperatures above 500°C fractionate the composite structure,
causing the decreasing aggregation and particle size. This is particularly noticeable at 600°C, for
which particle size drops up to a diameter of approximately 22 nm. The amorphous shadowed
areas ascribed to g-C;N, are also harder to locate, suggesting a pronounced alteration of the ratio
of substances in the overall chemical composition.

Figure S14. TEM images of the g-C3N4/H4NbO;7 composite annealed at (a) 300°C, (b) 400°C,
(c) 500°C and (d) 600°C






