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Figure S1. XRD pattern of as prepared K4Nb6O17 indexed to JCPDS, No. 76-0977.
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Figure S2. N2 adsorption-desorption isotherms and BJH pore size distribution of the samples.

Table 1: BET surface areas and pore volume of the samples.

                   

    

    

-150 -100 -50 0 50 100 150
0

200000

400000

600000

To
ta

l c
ou

nt
s

Zeta potential (mv)

 H4Nb6O17 (ann)
 g-C3N4

Figure S3. Zeta 
potential 
measurement for H4Nb6O17 (ann) and g-C3N4. 

The Kubelka-Munk plot in Figure S2 shows the X axis band gap energy, Eg,  and Y axis (αhν)2 , 
calculated as follow:
αhν =A(hν – Eg)n/2

where α is the absorption coefficient, h is Planck’s constant, ν is the photon energy, A is a 
proportionality constant, and n is = 1 for direct transition and =4 for indirect transition of the 
semiconductor. 
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Figure S4. Kubelka-Munk plot of the samples calculated from the UV-vis data shown in Figure 
4.

.

Figure S5. UV-vis spectra of H4Nb6O17 annealed at different temperatures 
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Figure S6. TGA of H4Nb6O17 (ann)
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Figure S7. . Recycling ability for H2O2 production for g-C3N4 and H4Nb6O17 (ann)/ g-C3N4 composite

Sample shows a mass loss between 250 and 570 oC  of ~7%, which can be ascribed to loss of 
incorporated organic material. Above this inflexion point decomposition is observed. 



Figure S8. VB-XPS spectra of g-C3N4 and the annealed H4Nb6O17.

Figure S9. VB-XPS spectra of VB-XPS of H4Nb6O17 (ann)/ g-C3N4.
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Figure S10. EPR spectra of ·O2
- radicals with irradiation for 2 min in methanol. 

     

ESI Section 2: Composite optimization

XRD:

Figure S11.  XRD patterns of g-C3N4/H4Nb6O17 composites (a) before and after annealing at (b) 
300°C, (c) 400°C, (d) 500°C and (e) 600°C.

When surveying the diffraction pattern of g-C3N4/H4Nb6O17 (1:2) composite, it was found that 
the diffraction peaks were mostly ascribed to the crystalline structure of exfoliated H4Nb6O17 
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(Figure S11 a). The failure in observing the characteristic peaks of g-C3N4 can be justified by the 
relatively lower degree of crystallinity and lower content of g-C3N4 in the mass ratio under study. 
However, crystallographic analyses proved to be useful in investigating the impact of the 
annealing treatment, carried out to potentially induce useful chemo-physical alterations (Figure 
S11 b-e). The diffraction peaks of the composite were preserved in the annealed samples, 
indicating that annealing at temperatures in the range between 300°C to 600°C did not destroy 
the g-C3N4/H4Nb6O17 heterostructure. Moreover, higher annealing temperatures (above 500°C) 
were responsible for the detection of two new peaks at around 28.5° and 36.5°, which could be 
ascribed to a considerable physical change.
FTIR and UV-Vis:

Figure S12.  IR spectra of the composite annealed at different temperatures.

The samples annealed at temperatures between 250°C and 450°C share the same spectrum of the 
pre-annealed composite without any distinct dissimilarities, as shown in Figure S12. Meanwhile, 
in the spectra of the samples annealed at temperatures above 500°C, the characteristic bands of 
g-C3N4 are missing. This can be explained by the inferior thermal stability of g-C3N4, and 
H4Nb6O17 dominating the physical features and properties of the composite. The sudden 
alteration in the compositional proportions is consistent with the conclusions drawn from the 
previous XRD.
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Figure S13.  UV-vis spectra of H4Nb6O17 annealed at different temperatures.

In Figure S13, the UV-vis spectra of the annealed composites suggest that a heating treatment 
within 450°C does not affect the optical properties of the material. However, above 500°C the 
absorption edge shifts towards shorter wavelengths closer to the pristine H4Nb6O17. As supported 
by TEM images, the phenomenon observed is connected to the quantum confinement effect, in 
which a decrease in the nanoparticle size leads to wider bandgaps.
TEM:
From the TEM images in Figure S14, we can see the effect of heating on the composite, 
particularly that higher annealing temperatures above 500°C fractionate the composite structure, 
causing the decreasing aggregation and particle size. This is particularly noticeable at 600°C, for 
which particle size drops up to a diameter of approximately 22 nm. The amorphous shadowed 
areas ascribed to g-C3N4 are also harder to locate, suggesting a pronounced alteration of the ratio 
of substances in the overall chemical composition. 

Figure S14. TEM images of the g-C3N4/H4Nb6O17 composite annealed at (a) 300°C, (b) 400°C, 
(c) 500°C and (d) 600°C
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