Electronic Supplementary Material (ESI) for Energy Advances. This journal is © The Royal Society of Chemistry 2022

Supporting information for:

Enhanced photocatalytic activity of novel brown H₄Nb₆O₁₇/g-C₃N₄ composite for visible-

light driven H₂O₂ production

Luona Zhang^a, Shiqi Zhao^a, Xiaorong Cheng^b, Zijie Liu^a, Ruochen Liu^a, Graham Dawson^{a*}

^aDepartment of Chemistry, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu, 215123, P. R.

China

^bSuzhou Vocational Institute of Industrial Technology, Suzhou, Jiangsu, 215104, P. R. China

* Corresponding author: graham.dawson@xjtlu.edu.cn

Figure S1. XRD pattern of as prepared K₄Nb₆O₁₇ indexed to JCPDS, No. 76-0977.

Figure S2. N₂ adsorption-desorption isotherms and BJH pore size distribution of the samples.

Table 1: BET surface areas and	pore volume of the samples.
--------------------------------	-----------------------------

	Sample	S _{BET} (m²/g)	Pore volume (cm³/g)	
	H ₄ Nb ₆ O ₁₇	26.0	0.15	_
	g-C ₃ N ₄	139.0	0.89	
	$H_4 Nb_6 O_{17}$ (ann.)	104	0.43	
Figure 000	g-C ₃ N ₄ /H ₄ Nb ₆ O ₁₇ (10 ⁻¹) H ₄ Nb ₆ O ₁₇ (ann)	100.4	0.44	S3. Zeta
measureme	$\frac{g - G_3 N_4}{g - C_3 N_4}$			_
400000 - දූ				
The Kubell	ca-Munk plot, in Figure S2 shows t	he X axis band gap er	hergy, E_g , and Y a	axis $(\alpha h v)^2$,
cal ulated a	as follow:			
αhv = A (thy	$(-E_{g})^{n/2}$			
where a is t	the absorption coefficient h is Plat	nck's constant v is the	e nhoton energy	Aisa

where α is the absorption coefficient, *h* is Planck's constant, v is the photon energy, A is a proportionality constant, and n is = 1 for direct transition and =4 for indirect transition of the semiconductor.

Figure S4. Kubelka-Munk plot of the samples calculated from the UV-vis data shown in Figure 4.

Figure S5. UV-vis spectra of H₄Nb₆O₁₇ annealed at different temperatures

.

Figure S6. TGA of H₄Nb₆O₁₇ (ann)

Figure S7. . Recycling ability for H_2O_2 production for g-C₃N₄ and $H_4Nb_6O_{17}$ (ann)/ g-C₃N₄ composite

Sample shows a mass loss between 250 and 570 °C $\circ f \sim 7\%$, which can be ascribed to loss of incorporated organic material. Above this inflexion point decomposition is observed.

Figure S8. VB-XPS spectra of $g-C_3N_4$ and the annealed $H_4Nb_6O_{17}$.

Figure S9. VB-XPS spectra of VB-XPS of H₄Nb₆O₁₇ (ann)/ g-C₃N₄.

Figure S10. EPR spectra of $\cdot O_2^-$ radicals with irradiation for 2 min in methanol.

ESI Section 2: Composite optimization

XRD:

Figure S11. XRD patterns of $g-C_3N_4/H_4Nb_6O_{17}$ composites (a) before and after annealing at (b) $300^{\circ}C$, (c) $400^{\circ}C$, (d) $500^{\circ}C$ and (e) $600^{\circ}C$.

When surveying the diffraction pattern of $g-C_3N_4/H_4Nb_6O_{17}$ (1:2) composite, it was found that the diffraction peaks were mostly ascribed to the crystalline structure of exfoliated $H_4Nb_6O_{17}$

(Figure S11 a). The failure in observing the characteristic peaks of $g-C_3N_4$ can be justified by the relatively lower degree of crystallinity and lower content of $g-C_3N_4$ in the mass ratio under study. However, crystallographic analyses proved to be useful in investigating the impact of the annealing treatment, carried out to potentially induce useful chemo-physical alterations (Figure S11 b-e). The diffraction peaks of the composite were preserved in the annealed samples, indicating that annealing at temperatures in the range between 300°C to 600°C did not destroy the $g-C_3N_4/H_4Nb_6O_{17}$ heterostructure. Moreover, higher annealing temperatures (above 500°C) were responsible for the detection of two new peaks at around 28.5° and 36.5°, which could be ascribed to a considerable physical change.

Figure S12. IR spectra of the composite annealed at different temperatures.

The samples annealed at temperatures between 250°C and 450°C share the same spectrum of the pre-annealed composite without any distinct dissimilarities, as shown in Figure S12. Meanwhile, in the spectra of the samples annealed at temperatures above 500°C, the characteristic bands of $g-C_3N_4$ are missing. This can be explained by the inferior thermal stability of $g-C_3N_4$, and $H_4Nb_6O_{17}$ dominating the physical features and properties of the composite. The sudden alteration in the compositional proportions is consistent with the conclusions drawn from the previous XRD.

Figure S13. UV-vis spectra of H₄Nb₆O₁₇ annealed at different temperatures.

In Figure S13, the UV-vis spectra of the annealed composites suggest that a heating treatment within 450°C does not affect the optical properties of the material. However, above 500°C the absorption edge shifts towards shorter wavelengths closer to the pristine H₄Nb₆O₁₇. As supported by TEM images, the phenomenon observed is connected to the quantum confinement effect, in which a decrease in the nanoparticle size leads to wider bandgaps.

TEM:

From the TEM images in Figure S14, we can see the effect of heating on the composite, particularly that higher annealing temperatures above 500°C fractionate the composite structure, causing the decreasing aggregation and particle size. This is particularly noticeable at 600°C, for which particle size drops up to a diameter of approximately 22 nm. The amorphous shadowed areas ascribed to g-C₃N₄ are also harder to locate, suggesting a pronounced alteration of the ratio of substances in the overall chemical composition.

Figure S14. TEM images of the $g-C_3N_4/H_4Nb_6O_{17}$ composite annealed at (a) 300°C, (b) 400°C, (c) 500°C and (d) 600°C