Electronic Supplementary Material (ESI) for Energy Advances. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Enhancing the photocatalytic hydrogen generation performance and strain regulation of the vertical GeI₂/C₂N van der Waals heterostructure: Insights from first-principles study Francis Opoku,*^a Samuel Osei-Bonsu Oppong,^b Noah Kyame Asare-Donkor,^a Osei Akoto,^a Anthony Apeke Adimado^a ^aDepartment of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana ^bMarine Engineering Department, Regional Maritime University, P.O. Box GP 1115, Accra,

Ghana

*Corresponding author: ofrancis2010@gmail.com

Figure S1. phonon dispersion spectra of GeI_2/C_2N vdW heterostructure under different biaxial.

Figure S2. Electronic band structures of GeI_2/C_2N vdW heterostructure under biaxial strain. The Fermi energy is set to zero.

Figure S3. PDOS of GeI₂/C₂N vdW heterostructure under different biaxial strain.

Figure S3. The calculated DOS of GeI_2/C_2N vdW heterostructure with strains of -8% to 8%. The dashed line denotes the Fermi energy level.

Figure S4. The band structure versus strain for HfS₂/BiOCl heterostructures