Electronic Supplementary Information (ESI)

Production of jet fuel-range hydrocarbon biofuel by hydroxyalkylationalkylation of furfural with 2-methylfuran and hydrodeoxygenation of C_{15} fuel precursor over Ni/ γ -Al₂O₃ catalyst: A reaction mechanism

Alekhya Kunamalla, Bhushan S. Shrirame, and Sunil K. Maity*

Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502284, Telangana, India.

*Corresponding author (Prof. Sunil K. Maity): Phone: +91-40-2301-6202; Fax: +91-40-2301 6003; E-mail: sunil_maity@che.iith.ac.in

Fig. S1. A typical GC-FID chromatogram for HAA of 2-MF with furfural. **GC analysis procedure**: ZB-5HT capillary column ($30m \times 0.32mm \times 0.10\mu m$). The oven temperature was increased from 313 K to 508 K using a ramp rate of 10 K/min and maintained there for four minutes. The injector and detector temperatures were maintained at 613 K and 653 K, respectively. **Reaction conditions**: 323 K, 1 g CER, and 2:1 2-MF/furfural.

Fig. S2. GC-FID chromatogram of gas-phase samples. GC conditions: GS-Gaspro column (30 m \times 0.32 mm \times 0.1 μ m), 523 K injector and detector temperature, and initial oven temperature of 343 K for 5 min, increased to 503 K with 10 K/min, and hold time there for 4 min. Reaction conditions: 0.5 g 20NiAl, 300 min of reaction time, 543 K, and 30 bar H₂.

Fig. S3. GC-TCD chromatogram of gas-phase samples. GC conditions: Carboseive S-II column, 373 K injector temperature, 523 K detector temperature, and 373 K oven temperature. Reaction conditions: 0.5 g 20NiAl, 543 K, and 30 bar H_2 .

Fig. S6. A typical GC-FID chromatogram for HDO of C_{15} fuel precursor. Reaction conditions: 0.5 g 20NiAl, 573 K, 120 min of reaction time, and 30 bar H_2 .

Fig. S8. (A) TPR profile of regenerated catalyst (calcined), (B) NH₃-TPD profile and (C) powder XRD pattern of regenerated catalyst (reduced).