Supporting Information

A coumarin coupled tetraphenylethylene based multi targeted AIE-gen for cyanide ion and

nitro explosive detection, and cellular imaging

Viraj G. Naik,^a Sharanabasava D. Hiremath,^a Ankit Thakuri,^a Vijay Hemmadi,^b Malabika Biswas,^b Mainak Banerjee *^a and Amrita Chatterjee*^a

^aDepartment of Chemistry and ^bDepartment of Biological Sciences BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.

Corresponding authors e-mail: <u>amrita@goa.bits-pilani.ac.in; mainak@goa.bits-pilani.ac.in</u>

Sr. No.	Title	Page No.
1	Solid-state emission images of the probe TPE-Lac	S2
2	UV-Vis spectrum for the probe TPE-Lac	S2
3	Solvent study of probe TPE-Lac	S3
4	Microscopic images of the probe TPE-Lac	S4
5	Cytotoxicity study	S4
6	Time-dependent study for cyanide ion detection	S5
7	Selectivity study	S5
8	UV study of the TPE-Lac-CN ⁻ complex	S6
9	Mechanism of cyanide detection	S 6
10	Nitro-aromatics detection	S7
11	Comparison of the present study and previous reports for	S9-S13
	detection of cyanide	
12	Reference	S14
13	¹ H NMR and ¹³ C NMR	S15-S18
14	HRMS data	S19-S20
15	IR spectra	S21

Table of contents

1. Solid-state emission images of the probe TPE-Lac

Figure S1. Images for probe molecule **TPE-Lac** (A) at normal light and (B) under UV light (long UV-365 nm). The probe **TPE-Lac** synthesized was yellow solid with bright greenish-yellow fluorescence.

2. UV-Vis spectrum for the probe TPE-Lac

Figure S2. UV-vis spectra for the probe TPE-Lac (10 μ M) in THF. The UV-vis showed two peaks at 312 nm and 362 nm.

Figure S3. UV-Vis spectra predicted from the ZINDO/CI level of study for the probe TPE-Lac.

From the ZINDO/CI level of study, the probe **TPE-Lac** was predicted to have a peak at 339 nm with oscillator strength of 0.0009. The predicted major absorption peak (only the one beyond 300 nm) from the ZINDO/CI level of study is pretty close to the experimentally observed value.

3. Solvent study of the probe TPE-Lac

The probe **TPE-Lac** being insoluble in water, its AIE characteristic was determined by carrying out fluorescence studies in variable ratio of water-THF solvent system. It was found that probe starts fluorescing at and above 80% H_2O -THF solvent system and shows strong fluorescence at 97% H_2O -THF due to its AIE property.

Figure S4. (A) Fluorescence response of probe **TPE-Lac** upon increasing concentration of water fraction in THF (λ_{ex} 345 nm, λ_{em} 510 nm). (B) A plot of fluorescence intensity of **TPE-Lac** against variable proportions of H₂O–THF mixture (λ_{ex} 345 nm, λ_{em} 510 nm). The probe starts showing strong AIE property at and above 80% H₂O-THF solvent system. (C) Vials from left to right represents emission of TPE-Lac (20 μ M) in 0 to 97% water/THF fractions.

4. Microscopic images of the probe TPE-Lac

Figure S5. Microscopic images of the probe **TPE-Lac** (A) 70%, (B) 80%, (C) 90%, (D) 93%, (E) 95%, and (F) 97% water/THF fractions on glass slide (all the images were taken using FITC filter).

5. Cytotoxicity study

Figure S6. Plot of % cell viability of H520 cells vs the concentration of probe **TPE-Lac** after incubation of 8, 12 and 24 h, respectively.

6. Time dependent study for cyanide ion detection

Figure S7. (A) Time-dependent fluorescence response of probe molecule **TPE-Lac** with the addition of 25 μ M of cyanide anion (λ_{ex} 345 nm, λ_{em} 510 nm). (B) The plot of fluorescence emission of TPE-Lac solution with 25 μ M of CN⁻ against time.

7. Selectivity study

Figure S8. Fluorescence response of **TPE-Lac** upon addition of different anions (100 μ M, λ_{ex} 345 nm, λ_{em} 510 nm).

Figure S9. Fluorescence response of **TPE-Lac** upon addition of different cations (100 μ M, λ_{ex} 345 nm, λ_{em} 510 nm).

8. UV study of TPE-Lac-CN⁻ complex

Figure S10. UV response of probe TPE-Lac upon addition of cyanide (upto 30 µM).

9. Mechanism of cyanide sensing

Upon the gradual addition of cyanide ions the fluorescence intensity of **TPE-Lac** slowly diminishes and ultimately is quenched. The presence of a strong electron-withdrawing group in the coumarin ring makes the 4-position susceptible to nucleophilic attack by the CN^- ion. The addition of CN^- ion interrupts the intramolecular charge transfer (ICT) process occurring through the backbone of coumarin and thereby leading to decrease in fluorescence.

Figure S11. a) Schematic representation of sensing mechanism of cyanide using **TPE-Lac**. LCMS spectrum of probe **TPE-Lac** (b and c) before and (d and e) after addition of 1 equiv of cyanide.

10. Nitroaromatics detection

Figure S12. A) Fluorescence response of **TPE-Lac** towards 4-nitroaniline. B) Plot of fluorescence response of **TPE-Lac** against lower concentration of aniline.

Figure S13. Selective response of TPE-Lac towards nitroaromatics.

Figure S14. A, C and B, D are bright field and fluorescence images of only probe **TPE-Lac** and probe **TPE-Lac** with picric acid respectively in the solution phase.

Sr. No.	Probe Structure	Sensing method	Solvent System	Linear Range	LOD	Solid-phase study	Cell imaging	Other analyt es	Ref
1	HO N OH $\lambda_{abs} = 515 \text{ nm}$	Colorimetric	50 % THF/HEPES, pH 7.04	-	0.8 μM.	Yes	NA	NA	S3
2	$HO = N$ $N = 10$ $\lambda_{abs} = 342 \text{ nm}$	Colorimetric	DMSO/H ₂ O (8:2 v/v).	-	77.2 n M	Yes	NA	NA	S4
3	$\lambda_{em} = 410 \text{ nm}$	Colorimetric and Fluorimetric	HEPES buffer (CH ₃ CN/ H ₂ O, 1:1, v/v, pH 7.4)	-	0.14 µM	Yes	NA	NA	S5

11. Table S1 Comparison of the present study and previous reports for detection of cyanide

	$\lambda_{\rm em} = 453 \ \rm nm$		v/v; CHES 0.1 M, pH 9.6)						
7	$\lambda_{\rm em} = 444 \ \rm nm$	Fluorescence turn-on	buffered water/ CH ₃ CN mixture (1/1 v/v; HEPES 0.1 M, pH 7.0)	-	1.8 µM	NA	Yes	NA	S9
8	$\lambda_{em} = 528 \text{ nm}$	Fluorescence turn-on	DMSO (<0.3%)/wate r	0–58 μM	0.6 µM	NA	NA	NA	S10
9	$\lambda_{em} = 625 \text{ nm}$	Fluorescence Turn-off (AIE)	99% aqueous DMSO solution	0–10 μM	67.4 nM	Yes	NA	NA	S11

10	$\lambda_{em} = 444 \text{ nm}$	Fluorescence turn-on (AIE)	99% aqueous DMSO solution	0–10 μM	1.09 μM.	NA	NA	NA	S12
11	$\lambda_{\rm em} = 580 \ \rm nm$	Fluorescence turn-off (AIE)	CH ₃ CN/water solution (1:99, v/v),	0–5 μM	0.22 μM	Yes	Yes	NA	S13
12	$\lambda_{em} = 596 \text{ nm}$	Fluorescence turn-on (AIE)	60% DMF/PBS	0.1–1.2 μM	0.35 μΜ	Yes	Yes	NA	S14

13	$\lambda_{\rm cm} = 480 \ \rm nm$	Fluorescence turn-on (AIE)	THF:Water (10:90)	-	24.5 μM	NA	NA	NA	S15
14	$\lambda_{em} = 458 \text{ nm}$	Fluorescence turn-on (AIE)	(9:1) H ₂ O:MeOH	0–80 µM	0.59 µM	NA	NA	NA	S16
15	$\lambda_{em} = 510 \text{ nm}$	Fluorescence turn-off AIE	THF: Water (3: 97)	0–14 μM	33 nM	Nitroaromat ics	Yes	Yes	Present work

12. Reference

S1. X. F. Duan, J. Zeng, J. W. Lu and Z. B. Zhang, J. Org. Chem., 2006, 71, 9873–9876.

S2. H. T. Feng, S. Song, Y. C. Chen, C. H. Shen, and Y. S. Zheng, *J. Mater. Chem. C*, 2014, **2**, 2353–2359.

S3. X. Cheng, R. Tang, H. Jia, J. Feng, J. Qin, and Z. Li, *ACS Appl. Mater. Interfaces*, 2012, 4, 4387–4392.

S4. Y. Leng, J. Zhang, Q. Li, Y. Zhang, Q. Lin, H. Yao and T. Wei, *New J. Chem.*, 2016, **40**, 8607–8613.

S5. X. Sun, Y. Wang, X. Zhang, S. Zhang and Z. Zhang, RSC Adv., 2015, 5, 96905–96910.

S6. R. K. Konidena and K. R. J. Thomas, RSC Adv., 2014, 4, 22902–22910.

S7. E. Thanayupong, K. Suttisintong, M. Sukwattanasinitt and N. Niamnont, *New J. Chem.*, 2017, **41**, 4058–4064.

S8. Y. Shiraishi, M. Nakamura, N. Hayashi and T. Hirai, Anal. Chem., 2016, 88, 6805-6811.

S9. Y. Shiraishi, N. Hayashi, M. Nakahata, S. Sakai and T. Hirai, RSC Adv., 2017, 7, 32304–32309.

S10. G. Mahalakshmi, P. S. Kumar, P. Rajalakshmi, M. Seenivasaperumal and K. P. Elango, *Methods Appl. Fluoresc.*, 2019, **7**, 025003.

S11. Q. Zou, F. Tao, H. Wu, W. W. Yu, T. Li and Y. Cui, Dyes Pigm., 2019, 164, 165–173.

S12. A. Sebastian and E. Prasad, *Langmuir*, 2020, **36**, 10537–10547.

S13. X. Chen, L. Wang, X. Yang, L. Tang, Y. Zhou, R. Liu and J. Qua, *Sens. Actuators, B*, 2017, **241**, 1043–1049.

S14. K. Deng, L. Wang, Q. Xia, R. Liu and J. Qua, Sens. Actuators, B, 2019, 296, 126645.

S15. M. H. Chua, H. Zhou, T. T. Lin, J. Wu and J. Xu, J. Mater. Chem. C, 2017, 5, 12194–12203.

S16. M. T. Gabr and F. C. Pigge, *Dalton Trans.*, 2018, 47, 2079–2085.

¹H NMR

¹H NMR for TPE-OH-CHO (4)

¹³C NMR for TPE-OH-CHO (4)

¹H NMR

¹³C NMR

¹³C NMR for TPE-Lac (5)

HRMS data

Compound Table								
						Diff		
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)		
Cpd 1: 0.182 99.0551	0.182	376.1467	15418	C27 H20 O2	376.1463	0.9		

Compound Label	m/z	RT	Algorithm	Mass
Cpd 1: 0.182 99.0551	377.1538	0.182	Find By Formula	376.1467

Liquid chromatograph for TPE-OH-CHO (4)

Mass spectrum for TPE-OH-CHO (4)

Liquid chromatograph for TPE-Lac (5)

Mass spectrum for TPE-Lac (5)

IR spectra

IR for TPE-Lac (5)