1 Supporting information

2 A dual-functional fluorescence biosensor based on enzyme-

3 involved catalytic hairpin assembly for the detection of

4 APE1 and miRNA-21

5 Xiaoyong Lu^a, Dan Li^b, Zewei Luo^{b,*} and Yixiang Duan^{a,*}

6 aResearch Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and

7 Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University,

8 Chengdu 610064, Sichuan, P.R. China.

9 ^bResearch Center of Analytical Instrumentation, Key Laboratory of Synthetic and

10 Natural Functional Molecule Chemistry of Ministry of Education, College of

11 Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R.
12 China.

*Corresponding author, E-mail: zwluo@nwu.edu.cn (Z. Luo), yduan@scu.edu.cn (Y.
Duan)

- 15
- 16
- 17

18 Condition optimization

For the optimization of APE1 inactivation time, 9.6 µL of 1 µM H1, 6 µL of 0.05 19 U/µL APE1 and 82.8 µL of 1× CutSmart buffer were first incubated at 37 °C for 20 20 minutes, and treated at 80 °C for different times. Then, 9.6 µL of 1 µM H2 and 12 µL 21 of 500 nM miRNA-21 were added into the above system, and incubated at 37 °C for 22 30 minutes. For the optimization of CHA reaction time, 9.6 μ L of 1 μ M H1, 6 μ L of 23 0.05 U/µL APE1 and 82.8 µL of 1× CutSmart buffer were first incubated at 37 °C for 24 20 minutes, and treated at 80 °C for 5 minutes. Then, 9.6 µL of 1 µM H2 and 12 µL of 25 500 nM miRNA-21 were added into the above system, and incubated at 37 °C for 26 different times. To optimize the final concentration of H1 and H2, 9.6 µL of different 27 concentrations of H1, 6 µL of 0.05 U/µL APE1 and 82.8 µL of 1× CutSmart buffer 28 were first incubated at 37 °C for 20 minutes, and treated at 80 °C for 5 minutes. Then, 29 9.6 µL of different concentrations of H2 and 12 µL of 500 nM miRNA-21 were added 30 into the above system, and incubated at 37 °C for 50 minutes. All the resulting 31 32 solutions were measured with fluorescent intensity immediately.

Figure S1 Selectivity of the biosensor for miRNA-21 against other miRNA-21 mimics (DNA
 strands). From left to right: blank; NC, non-complimentary miRNA-21 mimics; 2-mis, 2 nt
 mismatched miRNA-21 mimics; 1-mis, 1 nt mismatched miRNA-21 mimics.

Method	Target	Detection strategy	LOD	Linear	
				range	
fluorescence	APE1	real time-qPCR	0.1 U/mL	0.1-5	1
				U/mL	
fluorescence	APE1	DNA nanoprobe	0.02 U/mL	0.02-2	2
				U/mL	
fluorescence	APE1	host-guest interaction	0.05 U/mL	0.05-5	3
				U/mL	
fluorescence	APE1	tetrahedral DNA	0.01 U/mL	0.01-1	4
		nanostructure		U/mL	
colorimetric	APE1	G-quadruplex-hemin	1.8 U/mL	2.2-22.5	5
		DNAzymes		U/mL	
fluorescence	APE1	enzyme involved CHA	0.016	0.05-1	This
			U/mL	U/mL	work
fluorescence	miRNA-21	MnO ₂ nanosheets and	0.33 nM	1-50 nM	6
		CHA			
colorimetric	miRNA-21	graphene/gold-	3.2 nM	10-980	7
		nanoparticle ²		nM	
fluorescence	miRNA-21	graphene/gold -	4.5 nM	0-300 nM	8
		nanoparticle			
fluorescence	miRNA-21	surface acoustic wave	0.19 nM	0.5-5 nM	9

electrochemical	miRNA-21	gold nanoparticle/reduced	12 nM	-	10
		graphene oxide			
fluorescence	miRNA-21	enzyme involved CHA	0.25 nM	2.5-40 nM	This
					work

1	
2	
3	Table S1 Comparison of different sensors for APE1 or miRNA-21 detection.
4	
5	

6 **References**

- 7 1 S. Fang, L. Chen and M. Zhao, Anal Chem, 2015, 87, 11952-11956.
- 8 2 F. Li, Q. Xie, Y. Qin, C. Tong, B. Liu and W. Wang, Anal Biochem, 2021, 633, 114394.
- M. Zhou, S. Qin, Z. Feng, C. Song, H. Zhang, W. Li, Q. Wang, J. Liu, J. Huang,
 X. Yang and K. Wang, Chinese Chem Lett, 2018, 29, 973-976.
- 12 4 T. Zhou, R. Luo, Y. Li, J. Fan, Y. Hu, C. Tong, B. Liu and D. Li, Sensor Actuat
 B-Chem, 2020, 317, 128203.
- 14 5 X. Huang, Z. He, K. Zhou, H. Zhi and J. Yang, Analyst, 2021, 146, 7476-7482.
- W. Ouyang, Z. Liu, G. Zhang, Z. Chen, L. Guo, Z. Lin, B. Qiu and G. Chen, Anal
 Methods, 2016, 8, 8492-8497.
- 17 7 H. Zhao, Y. Qu, F. Yuan and X. Quan, Anal Methods, 2016, 8, 2005-2012.
- 18 8 M. Hong, H. Sun, L. Xu, Q. Yue, G. Shen, M. Li, B. Tang and C.-Z. Li, Anal
 Chim Acta, 2018, 1021, 129-139.
- 20 9 G. Celik Cogal, P. K. Das, G. Yurdabak Karaca, V. R. Bhethanabotla and A.
 21 Uygun Oksuz, ACS Appl. Bio Mater, 2021, 4, 7932-7941.
- H. Torul, E. Yarali, E. Eksin, A. Ganguly, J. Benson, U. Tamer, P.
 Papakonstantinou and A. Erdem, Biosensors-Basel, 2021, 11, 236.
- 24
- 25