Supporting Information

Primer extension activating 3D DNAzyme walker for telomerase activity in situ imaging and sensitive detection

Xiaoting Liu^{a,b}, Liyan Zhang^b, Ling Lu^a, Wei Jiang^b, and Nan Zhang^{*,a}

^a Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Cheeloo

College of Medicine, Shandong University, Jinan 250013, P. R. China.

^b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100,

P. R. China.

Corresponding author:

Nan Zhang*,^a: E-mail: <u>zlkzn2016@126.com</u>.

Name	Sequences (5'-3')	
Telomerase primer	AATCCGTCGAGCAGAGTT	
DNAzyme hairpin	(Cy5)- TGATGTTGATCCGAGCCGGTCGAAAGGGTTAGGGTTTTT TTTTTTTTTT	
Track strand	SH- TTTTTTTTTTTTTTCGACGGTTTTTCCTAACCCT <mark>rA</mark> GTCA ACATCATTTTTCCGTCG-FAM	

Table S1: Sequences of oligonucleotides used in this study

the telomerase primer, and the blue part represents the 8-17 DNAzyme sequence; the

red rA in the substrate hairpin represents adenine ribonucleotides.

1	1 1 J		
Name	Sequences (5'-3')		
TERT forward	GGAAGAGTGTCTGGAGCAAGTT		
TERT reverse	TGGGGATGAAGCGGAGTC		
GAPDH forward	TGGGTGTGAACCATGAGAAGT		
GAPDH reverse	TGAGTCCTTCCACGATACCAA		

Table S2: Sequences of qRT-PCR primer in this study

Figure S1 (A) The standard curve of FAM-labeled track strand, the linear equation is $F = 4.711C_{TS-FAM} - 169.1$, $R^2 = 0.9976$; (B) Fluorescence spectra of WS-AuNP-TS (5.0 nM) after incubation with PBS and DTT (20 mM), respectively, FAM-labeled track strand was recorded with 488 nm excitation wavelength; (C) The standard curve of Cy5-labeled DNAzyme hairpin, the linear equation is $F = 24.29C_{Cy5-DNAzyme hairpin} - 214.1$, $R^2 = 0.9843$; (D) Fluorescence spectra of WS-AuNP-TS (5.0 nM) after incubation with PBS and DTT (20 mM), respectively, Cy5-labeled DNAzyme hairpin was recorded with 632 nm excitation wavelength.

Figure S2 The effect of the modification ratio of walking strand and track strand on F/F_0 .

Figure S3 The effect of reaction time on the net signal of the system.

Figure S4 Selection of WS-AuNP-TS concentration. Scale bar: 25 $\mu m.$

Figure S5 Selection of WS-AuNP-TS incubation time. Scale bar: 25 $\mu m.$

Figure S6 Selection of Mn^{2+} concentration. Scale bar: 50 μ m.

Figure S7 Selection of Mn^{2+} incubation time. Scale bar: 25 μ m.

Strategy	Detection mode	LOD	Reference
ECL sensor using G-quadruplex and luminol modified AuNPs	ECL	148 cells	[1]
Telomere complementary oligonucleotide functionalized AuNPs probe	UV-vis	100 cells	[2]
Label-free colorimetry based on conjugate hemin-graphene	UV-vis	60 cells/mL	[3]
Ratiometric sensing based on structure- switching DNA	FRET	33 cells	[4]
Enzyme-free signal amplification-HCR	Fluorescence	480 cells	[5]
Single quantum dot-based biosensor	Fluorescence	185 cells	[6]
Tetrahedral DNA nanoprobe	Fluorescence	35 cells	[7]
Fluorescent tungsten oxide quantum dots	Fluorescence	17 cells	[8]
Controllable aggregation of quantum dots	Fluorescence	13 cells	[9]
Primer extension activated 3D DNAzyme walker	Fluorescence	10 cells	This work

 Table S3: Comparison of the detection performance for telomerase activity with

 some reported works.

Reference

[1] H.R. Zhang, Y.Z. Wang, M.S. Wu, Q.M. Feng, H.W. Shi, H.Y. Chen, J.J. Xu, Visual electrochemiluminescence detection of telomerase activity based on multifunctional Au nanoparticles modified with G-quadruplex deoxyribozyme and luminol, Chem Commun 50 (2014) 12575-12577. 10.1039/c4cc06302c

[2] J.S. Wang, L. Wu, J.S. Ren, X.G. Qu, Visual detection of telomerase activity with a tunable dynamic range by using a gold nanoparticle probe-based hybridization protection strategy, Nanoscale 6 (2014) 1661-1666. 10.1039/c3nr05185d

[3] X.L. Xu, M. Wei, Y.J. Liu, X. Liu, W. Wei, Y.J. Zhang, S.Q. Liu, A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates, Biosens Bioelectron 87 (2017) 600-606. 10.1016/j.bios.2016.09.005

[4] X.J. Yang, K. Zhang, T.T. Zhang, J.J. Xu, H.Y. Chen, Reliable forster resonance energy transfer probe based on structure-switching DNA for ratiometric sensing of telomerase in living cells, Anal Chem 89 (2017) 4216-4222. 10.1021/acs.analchem.7b00267

[5] M. Hong, L.D. Xu, Q.W. Xue, L. Li, B. Tang, Fluorescence imaging of intracellular telomerase activity using enzyme-free signal amplification, Anal Chem 88 (2016) 12177-12182. 10.1021/acs.analchem.6b03108

[6] Z. Yi, H.B. Wang, K. Chen, Q. Gao, H. Tang, R.Q. Yu, X. Chu, A novel electrochemical biosensor for sensitive detection of telomerase activity based on structure-switching DNA, Biosens Bioelectron 53 (2014) 310-315. 10.1016/j.bios.2013.09.072

[7] X.M. Yue, Y.Q. Qiao, D.N. Gu, Z.X. Wu, W.H. Zhao, X.Y. Li, Y.M. Yin, W. Zhao, D.M. Kong, R.M. Xi, M. Meng, Reliable FRET-ON imaging of telomerase in living cells by a tetrahedral DNA nanoprobe integrated with structure-switchable molecular beacon, Sensor Actuat B-Chem 312 (2020) 127943. 10.1016/j.snb.2020.127943

[8] L. Zhang, J.Q. Chen, M.F. Hong, R.P. Liang, J.D. Qiu, Facile synthesis of fluorescent tungsten oxide quantum dots for telomerase detection based on the inner filter effect, Analyst 145(2020) 2570-2579. 10.1039/D0AN00296H

[9] L. Zhang, M.F. Hong, J. Peng, J.Q. Chen, R.P. Liang, J.D. Qiu, A sensitive assay of telomerase activity based on the controllable aggregation of quantum dots, Sensor Actuat B-Chem 277 (2018) 22-29. 10.1016/j.snb.2018.08.107