Supplementary Information

Genosensor for detecting single-point mutations in dendron chip after blocked recombinase polymerase amplification

Sara Martorell^{a,b}, Ángel Maquieira^{a,b,c}, Luis A. Tortajada-Genaro^{*a,b,c}

 ^a Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.
 ^b Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Valencia, Spain.
 ^c Chemistry department, Universitat Politècnica de València, Valencia, Spain.
 E-mail: luitorge@gim.upv.es

Supplementary Information

Table of content

Table S1. List of used oligonucleotides.

Fig. S1: Dendron-mediated chemistry applied to the DNA-probe immobilization on polycarbonate planar surfaces.

Fig. S2: Reference probe immobilization on polycarbonate surfaces.

Fig. S3: Spot signal of hybridization assay depending on the crosslinker concentration in reference chips.

 Table S2. Comparison of dendrimer-mediated and dendron-mediated methods for the

 immobilization of probes

Fig. S4: Study of blocked-RPA conditions

Fig. S5: Study of blocked-RPA conditions

Fig. S6: Mixes of wild-type and mutant genomes

Fig. S7: Analysis of patient samples.

Table S1. List of used oligonucleotides	(a) single-strand study,	(b) study for the
discrimination of single-point mutation.		

(a)			
()	Target	Use	Sequence 5'-3'
	Α	Thiol-probe	TTGCTGATTTTCAACATCAGTCTGATAAGCTA-T10-SH
		Amine-probe	GATTTTCAACATCAGTCTGATAAGCTATTTTT-NH2
		Target	TAGCTTATCAGACTGATGTTGAAAATCAGCAA-DIG
	В	Thiol-probe	TTGCTGATTTCAGCTGCTTTTGGGATTCCGTTG-T10-SH
		Amine-probe	GATTTCAGCTGCTTTTGGGATTCCGTTGTTTT-NH2
		Target	CAACGGAATCCCAAAAGCAGCTGAAATCAGCAA-DIG
	С	Thiol-probe	TTGCTGATTTACCCCTATCACGATTAGCATTAA-T10-SH
		Amine-probe	GATTTACCCCTATCACGATTAGCATTAATTTTT-NH2
		Target	TTAATGCTAATCGTGATAGGGGTAAATCAGCAA-DIG
(b)			
	Target	Use	Sequence 5'-3'
	PICK3CA	FP-c	TTTGGAGTATTTCATGAAACAAATG
	gene	RP	DIG-TGTGTGGAAGATCCAATCCATT
		Blocker	TGAATGATGCACATCATGGTGGCT-23ddC
		Wild-type	NH2-C6-TTTTTTTTT-AATGATGCACATCATGGTGGCT
		p.H1047R	NH2-C6-TTTTTTTTT-ATGATGCACGTCATGGTGGC
		p.H1047L	NH2-C6-TTTTTTTTT-AATGATGCACTTCATGGTGGCT
		p.H1047P	NH2-C6-TTTTTTTTT-ATGATGCACCTCATGGTGGC
	Control	probe	NH2-C6-TTTTTTTTT-GTTGGAGCTGGTGGCGTAGG

Fig. S1: Dendron-mediated chemistry applied to the DNA-probe immobilization on polycarbonate planar surfaces. **a)** Dendron structure with amine-apex protected by tertbutyloxycarbonyl. The deprotection is a carbamate hydrolysis in acidic conditions. **b)** Conjugation to eight thiol-probes by photoclick-chemistry of thiol-yne **c)** Chip immobilization based on carbodiimide reaction mediated by 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC); R: dendron, R': probe, R'': activated chip surface.

Fig. S2: Reference probe immobilization on polycarbonate surfaces. **a)** VTES-mediated attachment based on the silanization of activated polycarbonate and thiol-ene click chemistry. **b)** Dendrimer-mediated attachment based on carbodiimide chemistry.

<u>VTES chips (Thiol-reaction)</u>. Thiol-probes were grafted on activated plastic chips by thiolene click chemistry reaction. After photo-activation, a solution of vinyltriethoxysilane (VTES, Sigma Aldrich) at 3% in isopropanol was incubated for 1 h at room temperature. Chips were washed several times with isopropanol, air-dried, and heated at 110 °C for 1 h. Thiol-DNA probe (SH-C₆-T₁₀-ATGATGCACGTCATGGTGGC) in PBS buffer was dispensed on the activated surface (40 nL). Finally, chips were irradiated for 30 s by UVozone at 254 nm, washed, and air-dried.

<u>EDA/COOH-PAMAM chips.</u> Amine functionalized dendrimers (COOH-PAMAM dendrimer, generation 3.5, Sigma Aldrich) were immobilized in the active amine-plastic chip. The activation treatment of chips consisted of incubating a solution of ethylenediamine (EDA) at 1% and 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC) at 50 mM. The incubation was for 30 min at room temperature. Later, chips were immersed in 70% ethanol solution and dried. Meanwhile, the mixtures of dendrimer (10 nM), NH₂-oligonucleotide probes (200 nM), and EDC (50 mM) were incubated in the printing solution at room temperature for 30 min with end-over rotation. After DNA-dendrimer coupling, solutions were arrayed on EDA-functionalized surfaces (40 nL). Finally, chips were washed and air-dried.

<u>Reference</u>: Martorell, S., Tortajada-Genaro, L. A., González-Martínez, M. A., & Maquieira, A. (2021). Surface coupling of oligo-functionalized dendrimers to detect DNA mutations after blocked isothermal amplification. Microchemical Journal, 106546.

Fig. S3: Spot signal of hybridization assay depending on the crosslinker concentration in reference chips. **a)** VTES-mediated chemistry. **b)** Dendrimer-mediated chemistry.

a)	Dendrimer method	Dendron method
Nanomaterial		
Structure		
Width	4.5 nm	2.4 nm
Height	4.5 nm	4.7 nm
Terminal groups	64 groups: -COOH	8 groups: -C≡CH 1 group: -NH₂
Probe-coupling		<u>0</u>
Mechanism	Carbodiimide reaction	Photochemistry
Conditions	EDC 50 mM	Reagent free
Concentrations	30 min Dendrimer 10 nM NH ₂ -probe 200 nM	Light 254 nm, 30 s Dendron 5 nM HS-probe 50 nM
Chip-coupling	_ .	
Mechanism	Carbodiimide reaction through a crosslinker Photo-activation	Direct carbodiimide reaction
Chip activation	Light 254 nm, 10 min NaOH, 30 min, 60 °C	Light 254 nm, 10 min NaOH, 30 min, 60 °C
Chip treatment	EDA-functionalized EDA 1%, EDC 50 mM 30 min, 37 °C	-
Conjugate	Spotting 40 nl	Spotting 30 nl
dispensation Conditions	EDC 50 mM, MES 0.1 M 60 min	EDC 50 mM, MES 0.1 M 60 min
(b)	Dendrimer method	Dendron method
Na	nomaterial cost	4
Other reagents cost Probe consumption		↓
Probe coupling		\checkmark
	Chip treatment	\checkmark
	Chip coupling	\checkmark
Effect o	n RPA method 🗸	\checkmark
Вас	kground signal ✓	✓ ✓

Table S1. Comparison of dendrimer-mediated and dendron-mediated methods for the immobilization of probes. a) Protocol. b) Performances.

✓ Best performing

Fig. SI.4: Blocked-RPA. a) Amplification mechanism. b) Gel electrophoresis and direct fluorescent measurement by SYBR safe as a staining agent. Conditions: Agarose 3%, separation at 110 V. Samples: HCT116 cell line (*PIK3CA* gene, c.3140A>G) and SK-N-AS cell line (wild-type).

Fig. SI.5: Study of blocked-RPA conditions: **a)** Effect of working temperature and reaction time on the registered signal. **b)** Separation profile of RPA products using a silica-membrane system (Jena Bioscience). DNA concentrations were determined by the NanoDrop instrument (Thermo Scientific). Fraction 4 corresponded to the excess primer (single-strand DNA) and fraction 7 to RPA product (double-strand DNA). **c)** Array images for different amounts of blocking agent (probes: 1. Wild-type (C); 2: mutant 1 (A); 3: mutant 2 (G); 4: mutant 3 (T); 5: negative control 1; 6: negative control 2). Sample: CRC cell line HCT116 with heterozygous H1047R mutation.

Fig. S6: Mixes of wild-type and mutant genomes. **a)** Comparison of amplification techniques. **b)** Capture-array image of hybridization mixes varying initial percentages (wild-type:mutant). **b)** Spot signal registered for wild-type and mutant probes depending on mutant percentage in the genome mixture.

Fig. S7: Analysis of patient samples for genotyping of *PIK3CA* gene based on blocked-RPA and hybridization on dendron-polymer chip. a) Gel electrophoresis: agarose 3%, separation at 110 V. b) Images of chips, compared to the next-generation sequencing (NGS) results. 1: Probe A, 2: Probe C, 3: Probe A, and 4: Probe G.