Electronic Supplementary Information

Sensitive Sensing of Alkaline Phosphatase and γ-Glutamyltranspeptidase Activity for Tumor Imaging

Yanyun Yang, Miaomiao Zhang, Wenting Zhang, Yinglu Chen, Tong Zhang, Sheng Chen, Yue Yuan, Gaolin Liang, and Shusheng Zhang*

Contents:

1. Syntheses of Luc and P-Bz-Luc

2. Supporting figures and tables

3. References
1. Syntheses and Characterizations of Luc and P-Bz-Luc

Scheme S1. Synthetic route for Luc.

Scheme S2. Synthetic route for P-Bz-Luc.
2. Supporting Figures and Tables

Figure S1. 1H NMR spectrum of Luc in DMSO-d_6.

Figure S2. 13C NMR spectrum of Luc in DMSO-d_6.
Figure S3. ESI-MS spectrum of Luc.

Figure S4. 1H NMR spectrum of B in CDCl$_3$.
Figure S5. ESI-MS spectrum of B.

Figure S6. 1H NMR spectrum of C in CDCl$_3$.
Figure S7. ESI-MS spectrum of D.

Figure S8. 1H NMR spectrum of E in CDCl$_3$.
Figure S9. ESI-MS spectrum of E.

Figure S10. 1H NMR spectrum of F in CDCl$_3$.
Figure S11. 13C NMR spectrum of F in CDCl$_3$.

Figure S12. ESI-MS spectrum of F.
Figure S13. ESI-MS spectrum of G.

Figure S14. 1H NMR spectrum of P-Bz-Luc in DMSO-d_6.
Figure S15. 13C NMR spectrum of P-Bz-Luc in DMSO-d_6.

Figure S16. 31P NMR spectrum of P-Bz-Luc in DMSO-d_6.
Figure S17. ESI-MS spectrum of P-Bz-Luc.

Figure S18. The stability of P-Bz-Luc in working buffer at 37 °C and different pH values for 2 h.
Figure S19. HPLC traces of 25 μM P-Bz-Luc (black), 25 μM P-Bz-Luc in working buffer (10 mM Tris, pH 8.0) incubated with 100 U/L ALP at 37 °C for 2 h (blue), and 25 μM Luc (red). Wavelength for detection: 320 nm

Figure S20. BL spectra of P-Bz-Luc (25 μM) before (grey) and after the treatment of ALP (100 U/L) at 37 °C for 2 h (black).
Figure S21. HPLC traces of 25 μM P-Bz-Luc (black), 25 μM P-Bz-Luc in working buffer (10 mM Tris, pH 8.0) incubated with 200 U/L GGT at 37 °C for 2 h (blue), and 25 μM Luc (red). Wavelength for detection: 320 nm.

Figure S22. BL spectra of P-Bz-Luc (25 μM) before (dark yellow) and after the treatment of GGT (200 U/L) at 37 °C for 2 h (black).
Figure S23. Detection of ALP in the supplied GGT with the horse IgG ELISA kit. The error bar represents the standard deviation of three independent experiments.

Figure S24. Interactions of P-Bz-Luc and GGT6. (a) 3D interaction, hydrogen bonds are highlighted by yellow dash line. Covalent bond is shown as orange dash line. P-Bz-Luc is shown as orange stick, GGT6 protein is shown as rainbow cartoon. Pictures were produced by open-source program PyMOL. (b) 2D interaction diagram. Covalent bond is shown as purple dash line, hydrogen bond is shown as violet arrows. Hydrophobic residues are colored by light green and polar residues are colored by light cyan. Pictures were produced by open-source program PyMOL and academic free Maestro.
Figure S25. Lineweaver-Burk plots for the ALP enzyme-catalyzed reaction of P-Bz-Luc. Conditions: 100 U/L ALP, 25-250 μM of P-Bz-Luc.

Figure S26. (a) The conversion rate of the reaction between P-Bz-Luc and GGT versus the reaction time. (b) Linear regression analysis of the reciprocal remained P-Bz-Luc concentration versus the reaction time. Conditions: 100 U/L GGT, 25 μM of
P-Bz-Luc.

Figure S27. MTT assay of **P-Bz-Luc** on MDA-MB-231 cells (non-luciferase transfected). The error bar represents the standard deviation of three independent experiments.

Figure S28. Quantified total photon output of Figure 3a at 10 h; Statistical significance was calculated via Student’s t test (** for $P = 0.005$).
Table S1. Summary of detection techniques and limits of detection for **P-Bz-Luc** and recently reported ALP probes.

<table>
<thead>
<tr>
<th>Probes</th>
<th>Detection Methods</th>
<th>LOD of ALP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Bz-Luc in this work</td>
<td>bioluminescence</td>
<td>0.172 U/L</td>
</tr>
<tr>
<td>LET-3</td>
<td>near infrared fluorescence</td>
<td>0.200 U/L</td>
</tr>
<tr>
<td>FAS-P</td>
<td>aggregation induced emission</td>
<td>0.600 U/L</td>
</tr>
<tr>
<td>MTR-P</td>
<td>near infrared fluorescence</td>
<td>0.0420 U/L</td>
</tr>
<tr>
<td>CyP</td>
<td>fluorescence</td>
<td>0.730 U/L</td>
</tr>
<tr>
<td>P-TPE-TG</td>
<td>ratiometric fluorescence</td>
<td>0.0340 U/L</td>
</tr>
<tr>
<td>DQM-ALP</td>
<td>aggregation induced emission</td>
<td>0.150 U/L</td>
</tr>
<tr>
<td>APW</td>
<td>ratiometric fluorescence</td>
<td>0.460 U/L</td>
</tr>
<tr>
<td>Cy-OP</td>
<td>near infrared fluorescence</td>
<td>0.160 U/L</td>
</tr>
</tbody>
</table>

Table S2. Summary of detection techniques and limits of detection for **P-Bz-Luc** and recently reported GGT probes.

<table>
<thead>
<tr>
<th>Probes</th>
<th>Detection Methods</th>
<th>LOD of GGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Bz-Luc in this work</td>
<td>bioluminescence</td>
<td>0.634 U/L</td>
</tr>
<tr>
<td>Cy-GSH</td>
<td>ratiometric near-infrared fluorescence</td>
<td>0.0300 U/L</td>
</tr>
<tr>
<td>ABTTT-Glu</td>
<td>aggregation induced emission</td>
<td>2.90 U/L</td>
</tr>
<tr>
<td>TMN-Glu</td>
<td>near infrared fluorescence</td>
<td>0.0240 U/L</td>
</tr>
<tr>
<td>Mito-Bcy-GGT</td>
<td>near infrared fluorescence</td>
<td>0.400 U/L</td>
</tr>
<tr>
<td>NIR-SN-GGT</td>
<td>near infrared fluorescence</td>
<td>0.0240 U/L</td>
</tr>
<tr>
<td>mNVPy_Glu</td>
<td>fluorescence</td>
<td>1.47 U/L</td>
</tr>
<tr>
<td>DPP-GGT</td>
<td>ratiometric fluorescence</td>
<td>0.154 U/L</td>
</tr>
</tbody>
</table>
3. References

(9) Ou-Yang, J.; Li, Y.; Jiang, W. L.; He, S. Y.; Liu, H. W.; Li, C. Y., Fluorescence-Guided Cancer Diagnosis and Surgery by a Zero Cross-Talk Ratiometric Near-Infrared gamma-

