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Scheme S1. Formation of cyclic poly(glycidyl phenyl ether), pGPE, by zwitterionic ring expansion
polymerization (ZREP) of glycidyl phenyl ether (GPE).1? Initiation proceeds by activation of the
monomer via complexation with B(CsFs)3 catalyst, which generates a zwitterionic complex that
readily undergoes ring opening by nucleophilic insertion of an uncomplexed GPE monomer. This
step transfers the cationic charge to the newly added monomer, maintaining a zwitterionic
structure that facilitates the continuous insertion of monomers and formation of a polymer chain
that is kept cyclized through electrostatic interactions between the positive and negative
charges. Termination by a backbiting reaction (intramolecular nucleophilic ring opening) that
expels the B(CeFs)s catalyst ultimately leads to a macrocyclic product. Alternative termination
steps and other side reactions are possible, however, giving rise to byproducts with distinct

architectures, cf. Schemes S2-S5.%3
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Scheme S2. Termination of the ZREP of GPE by the addition of water, which expels the catalyst

and produces a linear polyether with HO- and -H end groups (18 Da).?3
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Scheme S3. Termination of the ZREP of GPE by dimerization, proceeding via hydrogen abstraction
to yield a vinyl ether, intermolecular dimerization between the vinyl ether and propagating
polymer, and hemicyclization via backbiting that gives rise to a polyether with tadpole

architecture.?3
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Scheme S4. Attachment of the B(CsFs)s Lewis acid at the phenoxy O atom of GPE creates an
electrophilic CH; center next to the oxonium ion, which can react with the nucleophilic OH groups
in the linear and tadpole pGPE, derivatizing them into glycidyl ether moieties. Phenol and the

Lewis acid are released in this process. The O-H - O-glycidyl conversion increases the mass by

56 Da.
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Scheme S5. Termination of the ZREP of GPE by the addition of phenol (formed as shown in

H

Scheme S4), which expels the catalyst and produces a linear polyether with PhO- and -H end

groups (94 Da).
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Scheme S6. (a) Fragmentation pathway to the fragment ion series [150n + 58 + Na]*, illustrated
for the formation of the fragment at m/z 531.24 from a tadpole 7-mer with 3 repeat units in its
cyclic head; similar fragmentation pathways in 7-mers with (b) three or (c) two repeat units in

their cyclic heads account for all ions observed within the [150n + 58 + Na]* series.
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Fig. S1. (a) Matrix-assisted laser desorption/ionization (MALDI) MS spectrum of pGPE, prepared
by ZREP of GPE (CoH1002, 150 Da). (b) Expanded view of the m/z 1050-1360 region, showing the
products observed within two repeat units. All ions are sodiated species, [M + Na]*. The main
series (marked with @ or #) arises from macrocyclic (@) or tadpole (#) isomers, both of which
have the composition (CoH1002)» with no nominal end groups and overlap at the same m/z value.
The other series originate from the linear or tadpole structures depicted at right, which contain
end groups that endow unique m/z ratios to the corresponding [M + Na]* species. (This spectrum
was acquired with a Bruker UltraFlex Il MALDI tandem time-of-flight (ToF/ToF) mass
spectrometer, using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile

(DCTB) as matrix.)
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Fig. S2. LC-MS spectra acquired at (a) 4.88 and (b) 5.63 min (maxima of LC peaks in Fig. 2),
illustrating separation according to degree of polymerization and polarity. Polarity increases with
decreasing degree of polymerization (due to the hydrophobic nature of the monomer) and with
hydroxylation (due to the higher polarity of alcohol vs. ether groups). A higher polarity lowers
the retention time in reversed-phase LC. Consequently, the more polar cyclic trimer (C3) elutes
before the cyclic tetramer (Cs); similarly, the tadpole tetramer (TP4s-OH) elutes earlier that the
isomeric cyclic tetramer (Cs) tetramer. The separate elution of isomers (identical m/z) with
distinct polarities is more clearly displayed in extracted ion chromatograms (XICs), as discussed

in the main text.
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Fig. S3. LC-MS/MS spectrum of sodiated TP-OH (m/z 1073.47) displaying all detectable fragment

ions (the spectra in Fig. 5 were acquired over a smaller mass range, viz. m/z

400-1100, as C;

formed no detectable fragments below m/z 400). The structures on top of the spectrum indicate

the bonds being cleaved to form fragment ion series [150n + 40 + Na]* (red m/z) and [150n + 58

+ Na]* (brown m/z) from tadpole 7-mers with 2 repeat units in their cyclic head.
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Fig. S4. LC-MS/MS spectra of the sodiated 8-mers (m/z 1223.53) eluting at (a) 8.60 and (b) 9.32
min (cf. Fig. 4 and Table S1). Based on the elution order in RPLC, these eluates correspond to (a)
TPs-OH and (b) Cs, respectively. Fragments formed from the tadpole architecture according to
the pathways depicted in Schemes 1 and S6 are marked with red and brown m/z values, whereas
fragments formed from the macrocyclic architecture according to Schemes 2-4 are marked with

blue m/z values. The two spectra mirror the differences observed for the corresponding 7-mers

(Fig. 5).
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Table S1. Retention times and peak areas of the tadpole and macrocyclic oligomers in the

extracted ion chromatograms (XICs) of poly(glycidyl phenyl ether) (pGPE) in Fig. 4°

pGPE oligomer (n) Architecture Retention time (min) Peak area (a.u.)®

tadpole (TP4-OH) 491 84

4 cyclic (Ca) 5.63 1735

tadpole (TPs-OH) 5.92 102

3 cyclic (Cs) 6.80 1445
tadpole (TPs-OH) 7.06 97

6 cyclic (Ce) 7.75 359

tadpole (TP7-OH) 7.84 119

7 cyclic (C7) 8.57 192
tadpole (TPs-OH) 8.60 60
8 cyclic (Cs) 9.32 85
tadpole (TP9-OH) 9.28 41
9 cyclic (Co) 9.93 23
tadpole (TP10-OH) 9.91 37
10 cyclic (Cro) 10.57 4
tadpole (TP11-OH) 10.44 22
1 cyclic (C11) 11.02 2
tadpole (TP12-OH) 10.95 14
12 cyclic (C12) - 0
13 tadpole (TP13-OH) 11.36 7
cyclic (C13) - 0

@ Based on the summed peak areas of the XICs, the pGPE sample analyzed contains 87%
macrocyclic and 13% tadpole chains, corroborating that electrophilic ZREP predominantly yields

macrocyclic product.
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