Supporting Information

Profiling of Branched-Chain Fatty Acids via Nitroxide Radical-Directed

Dissociation Integrated on an LC-MS/MS Workflow

Ruijun Jian^a, Xue Zhao^a, Qiaohong Lin^a, Yu Xia^{*,a}

^aMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological,

Department of Chemistry, Tsinghua University, Beijing 100084, China

Corresponding Author Information:

E-mail: xiayu@mail.tsinghua.edu.cn

ORCID

Yu Xia: 0000-0001-8694-9900

Scheme S1. Proposed fragmentation pathways for N-O rearrangement during CID of $[M^{\#}+Li]^+$. "#" stands for O-BHA modification of FA.

Figure S1. (a) Intensity ratio of FA n-17:0 ($[M^{\#} + H]^+$, *m/z* 376, 10 µM) over the internal standard (*m/z* 394, 5 µM) as a function of reaction time. FA 18:0-d₄ derivatized by O-BHA at 60°C for 1h was added as the internal standard at the end of FA n-17:0 derivatization. (b) XICs of $[M-H]^-$ (*m/z* 269) of FA n-17:0 before and after 1h reaction at 60°C. (c) MS² CID of FA n-17:0 ($[M^{\#} + H]^+$, *m/z* 376). (d) MS² CID of FA n-17:0 ($[M^{\#} - H]^-$, *m/z* 374)collected on QTOF mass spectrometer.

Figure S2. Analysis of monounsaturated and cyclopropane FAs via nitroxide-RDD. MS² CID of $[M^{\#}+Li]^+$, the lithium adduct ions of O-BHA derivatized (a) FA 18:1 (11Z) (*m/z* 394), (b) FA 18:1 (9Z) (*m/z* 394), (c) FA 18:1 (5Z, 8Z, 11Z, 14Z) (*m/z* 416) and (d) FA 17:0; [9-11cy3:0] (*m/z* 380) collected on a QTOF mass spectrometer.

Figure S3. Identification of FA 20:0 isomers in yak milk powder. (a) XIC of m/z 319 from MS² CID of $[M^{\#}+Li]^+$. MS² CID spectra of FA 20:0 ($[M^{\#}+Li]^+$, m/z 424) from peaks eluted at (b) 32.6 min (phytanic acid) and (c) 34.4 min (FA n-20:0) collected on a QTOF mass spectrometer.

Figure S4. Identification of FA 24:0 isomers in human plasma. (a) XIC of the FA 24:0 isomers $(m/z \ 375 \text{ from MS}^2 \text{ CID of } [M^{\#}+\text{Li}]^+)$. MS² CID spectra of $[M^{\#}+\text{Li}]^+ (m/z \ 480)$ from peaks eluted at (b) 37.8 min (FA i-24:0) and (c) 38.1 min (FA n-24:0).

Figure S5. Identification of FA 17:0 isomers in human plasma. $MS^2 CID$ spectra of $[M^{\#}+Li]^+$ (*m/z* 382) from peaks eluted at (a) 24.9 min (FA ai-17:0), (b) 25.4 min (FA i-17:0) and (c) 27.2 min (n-17:0) collected on a QTOF mass spectrometer.

LC Method(All flow rate: 0.300 mL/min)

Method 1 (For standard mixture)

Time (minute)	Mobile phase B (%)
0.0	30
2.0	30
8.0	45
24.5	45
31.5	95
34.0	95
34.5	30
37.0	30

Table S1. LC Method 1 Gradient

Method 2 (For biological sample)

Table S2. LC Method 2 Gradient

Time (minute)	Mobile phase B (%)
0.0	30
2.0	30
8.0	45
24.5	45
31.5	95
41.5	95
42.0	100
46.5	100
47.0	30
50.0	30

Molecular formula	Theoretical <i>m/z</i>	Measured <i>m/z</i>	Error (ppm)
$C_{24}H_{41}LiNO_2^+$	382.3292	382.3292	0
$C_{17}H_{34}LiNO_{2}^{+}$	291.2744	291.2746	+0.7
C ₁₇ H ₃₄ LiO ₂ ⁺	277.2713	277.2713	0
$C_{16}H_{31}LiNO_{2}^{+}$	276.2509	276.2513	+1.3
C ₁₇ H ₃₃ LiNO ⁺	274.2717	274.2717	+1.0
$C_{15}H_{29}LiNO_{2}^{+}$	262.2353	262.2353	0
C ₁₇ H ₃₂ LiO ⁺	259.2608	259.2610	+0.8
$C_{14}H_{27}LiNO_{2}^{+}$	248.2196	248.2198	+0.7
$C_{13}H_{25}LiNO_{2}^{+}$	234.2040	234.2041	+1.3
$C_{12}H_{23}LiNO_2^+$	220.1883	220.1884	+0.4
$C_{11}H_{21}LiNO_{2}^{+}$	206.1727	206.1730	+1.5
$C_{10}H_{19}LiNO_{2}^{+}$	192.1570	192.1571	+0.5
C ₉ H ₁₇ LiNO ₂ ⁺	178.1414	178.1414	0
C ₈ H ₁₅ LiNO ₂ ⁺	164.1257	164.1255	-1.2
C ₇ H ₁₃ LiNO ₂ ⁺	150.1101	150.1100	0
C ₆ H ₁₁ LiNO ₂ ⁺	136.0944	136.0944	0
C ₅ H ₉ LiNO ₂ ⁺	122.0788	122.0787	0
C7H8LiN	113.0811	113.0811	-0.3
C ₇ H ₇ LiN ⁺	112.0733	112.0733	-0.8
C ₄ H ₇ LiNO ₂ ⁺	108.0631	108.0630	-1.2
$C_7 H_8 N^+$	106.0651	106.0652	+0.7
C ₃ H ₅ LiNO ₂ ⁺	94.0475	94.0473	-2.1
C ₇ H ₇ ⁺	91.0542	91.0543	+0.8
C ₆ H ₆ Li ⁺	85.0624	85.0623	-1.1
C ₂ H ₄ LiNO ₂ ⁺	81.0397	81.0395	-2.5

Table S3. Accurate mass measurement of fragment ions generated from MS^2 CID of FA n-17:0 $([M^{\#}+Li]^+)$ on a QTOF mass spectrometer.

Sum	[M [#] +H] ⁺ ,	Rel. Composition (%)	$[M^{\#}+Li]^+$,	Retention time,
composition	m/z		m/z	min
FA 6:0	222	n-6:0 (100%)	228.1571	2.6
FA 7:0	236	n-7:0 (100%)	242.1727	3.0
FA 8:0	250	n-8:0 (100%)	256.1884	3.4
FA 9:0	264	n-9:0 (100%)	270.204	4.1
FA 10:0	278	n-10:0 (100%)	284.2196	5.1
FA 11:0	292	n-11:0 (100%)	298.2353	6.6
FA 12:0	306	n-12:0 (100%)	312.2509	8.4
		ai-13:0 (6.6%)		9.8
FA 13:0	320	i-13:0 (19.2%)	326.2666	10.0
		n-13:0 (74.2%)		10.5
EA 14:0	224	i-14:0 (2.1%)	240 2922	12.4
FA 14:0 334	334	n-14:0 (97.9%)	340.2822	13.4
		ai-15:0 (36.0%)		15.2
FA 15:0 348	348	i-15:0 (15.9%)	354.2979	15.6
		n-15:0 (48.1%)		16.5
EA 16:0	262	i-16:0 (1.7%)	269 2125	19.9
FA 16:0 362	302	n-16:0 (98.3%)	308.3133	21.1
FA 17:0 376		ai-17:0 (31.9%)	382.3292	25.4
	376	i-17:0 (22.3%)		26
		n-17:0 (46.8%)		27.8
FA 18:0 390	200	i-18:0 (0.5 %)	206 2449	31.0
	390	n-18:0 (99.5%)	396.3448	31.6
FA 19:0	404	n-19:0 (100%)	410.3605	33.3
FA 20:0 418	410	Phytanic acid (29.1%)	40.4.07(0	32.5
	418	n-20:0 (70.9%)	424.3762	34.4
FA 21:0	432	n-21:0 (100%)	438.3918	35.3
FA 22:0	446	n-22:0 (100%)	452.4075	36.1
FA 23:0	460	n-23:0 (100%)	466.4231	37.1
FA 24:0	474	n-24:0 (100%)	480.4388	38.2

Table S4. A list of identified saturated FAs from yak milk powder.

Analysis of total fatty acids in pooled human plasma

Sum	[M [#] +H] ⁺ ,	Pol Composition (%)	[M#+Li]+,	Retention time,
composition	m/z	Kel. Composition (%)	m/z	min
FA 6:0	222	n-6:0 (100%)	228.1571	2.6
FA 7:0	236	n-7:0 (100%)	242.1727	3.0
FA 8:0	250	n-8:0 (100%)	256.1884	3.4
FA 9:0	264	n-9:0 (100%)	270.204	4.1
FA 10:0	278	n-10:0 (100%)	284.2196	5.1
FA 12:0	306	n-12:0 (100%)	312.2509	8.4
		ai-13:0 (25.2%)	326.2666	9.8
FA 13:0	320	i-13:0 (9.7%)		10.0
		n-13:0 (65.1%)		10.5
EA 14.0	224	i-14:0 (1.9%)	240 2022	12.4
FA 14:0	334	n-14:0 (98.1%)	340.2822	13.4
		ai-15:0 (28.4%)		15.1
FA 15:0	348	i-15:0 (9.4%)	354.2979	15.4
		n-15:0 (62.2%)		16.3
EA 16.0	262	i-16:0 (0.3%)	368.3135	19.4
FA 10:0	302	n-16:0 (99.7%)		20.6
		n-5 (4.7%)	382.3292	24.3
EA 17.0	276	ai-17:0 (16.5%)		24.9
FA 17:0 376	3/0	i-17:0 (14.0%)		25.4
		n-17:0 (64.7%)		27.2
FA 18:0 390	200	i-18:0 (0.1 %)	396.3448	30.7
	390	n-18:0 (99.9%)		31.4
FA 19:0	404	n-19:0 (100%)	410.3605	33.2
FA 20:0	418	n-20:0 (100%)	424.3762	34.3
FA 21:0	432	n-21:0 (100%)	438.3918	35.3
FA 22:0	446	n-22:0 (100%)	452.4075	36.1
FA 23:0	460	n-23:0 (100%)	466.4231	37.1
FA 24:0	4774	i-24:0 (10.3%)	480.4388	37.8
	4/4	n-24:0 (89.7%)		38.1
FA 26:0	502	n-26:0 (100%)	508.4701	40.7

 Table S5. A list of identified saturated fatty acids from pooled human plasma.