Supporting Information

Nanomaterial-Assisted Thread-Based Isotachophoresis with on-Thread Solute Trapping

Liang Chen^{a,b}, Alireza Ghiasvand^{a,b,d*}, Estrella Sanz Rodriguez^a, Peter Innis^c and Brett Paull^{a,b}

^a Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart 7001, Australia

^b ARC Centre of Excellence for Electromaterials Sciences (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia

^c ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia ^d Department of Chemistry, Lorestan University, Khoramabad, Iran

Corresponding Author:

Alireza Ghiasvand

E-mail: <u>alireza.ghiasvand@utas.edu.au</u>

Tel-Fax: +61 3 6226 2121

ORCID ID: https://orcid.org/0000-0002-4570-7988

Video S1. Electromigration of alkaloids on a 5-cm nylon thread with a nylon knot tied at the position of 4-cm from the inlet reservoir. Sample: 2 μ L of alkaloids standard mixture solution containing 5 μ g mL⁻¹ of each of coptisine, berberine, and palmatine. LE was a 20 mM potassium acetate solution in 0.1 % PVP (pH = 5.0) and TE was a 20 mM β-alanine solution in 0.1% PVP (pH = 4.7). TB-ITP experiment was performed in cathodic mode with a constant current of 200 μ A. The speed has been increased 64X.

Video S2. Electromigration of alkaloids on 5-cm nylon thread with a BSA/GO-functionalized nylon knot tied at the position of 4-cm from the inlet reservoir. The experimental conditions were similar to those described in Video S1.

Figure S1. Voltage and current changes versus TB-ITP time. A constant current was applied at 200 μ A (from 0 to 5 min) and changed to constant voltage at 500 V (from 5 min till dryness of the thread).

Figure S2. Calibration curves and linear regressions of three alkaloids solutions obtained by direct HPLC-UV analysis in the range of $0.1 - 10 \mu g/mL$.

Figure S3. Calibration graphs and regression equations of three model alkaloids acquired by the developed TB-ITP-DESI-MS strategy with a BSA/GO coated trapping knot.

Figure S4. MS spectra obtained using direct DESI-MS analysis of a urine sample (a) and the fortified (5 μ L, 0.1 μ g/mL) urine sample (b), and MS spectra for the analysis of the fortified urine sample with sample volumes of 5 μ L (c) and 10 μ L (d) using the TB-ITP-DESI-MS method.