Electronic Supplementary Information

A nitrobenzoxadiazole-based near-infrared fluorescent probe for specific imaging of H₂S in inflammatory and tumor mice

Wen-Xin Wang,^a Zhi-Qing Wang,^a Zhi-Ke Tan,^a Guo-Jiang Mao,^b Dong-Hua Chen,^a Chun-Yan Li*^a

^{*a*} Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.

^b Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China.

*Corresponding Author. E-mail: lichunyan79@sina.com.

Table of contents

1. Experimental section	S3
2. Synthesis of probes	S6
3. Spectral data	S9
4. Response mechanism	S11
5. Biological assays	S12

1. Experimental Section.

Reagents and instruments. Cyclohexanone, phosphorus tribromide (PBr₃), 2-hydroxy-4-methoxybenzaldehyde, cesium carbonate (Cs₂CO₃), boron tribromide (BBr₃), 4-(diethylamino) salicylaldehyde, ethyl acetoacetate, piperidine, 4-chloro-7-nitrobenzofurazan were purchased from Aladdin (Shanghai, China). Unless otherwise stated, all chemicals were purchased from commercial suppliers and used without further purification.

Nuclear magnetic resonance (NMR) spectra were measured on a Bruker Avance II NMR spectrometer (Germany). Mass spectra (MS) were acquired on a Bruker Autoflex MALDI-TOF mass spectrometer (Germany). High-resolution mass spectra (HRMS) were obtained on an Agilent 1260II/6230B LC-MS spectrometer (USA). HPLC was carried out on a Agilent 1260 LC system with a C18 column (USA). The absorption spectra were determined by using a PerkinElmer Lambda 25 UV-vis spectrophotometer (USA). The fluorescence spectra were determined by using a PerkinElmer LS-55 fluorescence spectrometer (USA). The fluorescence images of cells and zebrafish were performed by using a Nikon confocal fluorescence microscope (Japan). The fluorescence images of mice were carried out on an IVIS Lumina XR small animal optical in vivo imaging system (USA).

Determination of the detection limits. The detection limit was calculated according to the fluorescence titration. The emission intensity of CX-N in the absence of H_2S in PBS buffer solutions (10 mM, pH 7.4) was calculated ten times, and the standard deviation of blank measurements was determined. Three independent duplication measurements of emission intensity were performed in the presence of H_2S , and each average value of the intensities was plotted as a concentration of H_2S for determining the slope. The detection limit is then calculated with eq 1:

Detection limit =
$$3\sigma/k$$
 (1)

Where σ is the standard deviation of the emission intensity of CX-N and k is the slope between the emission intensity and concentration.

Preparation of test solution. The stock solution of CX-N was obtained in DMSO. The stock solution of H_2S was obtained by dissolving NaHS with deionized water. The test solution was prepared with PBS buffer solution (10 mM, pH 7.4) in a 10 mL volumetric flask. The concentration CX-N were 1.0×10^{-5} M and H_2S were 3.0×10^{-5} - 5.0×10^{-7} M.

Imaging H₂S in living cells. HeLa cells were cultured in the DMEM medium with the addition of fetal bovine serum (10 %) and antibiotics (1%) at 37 °C in atmosphere of 5% CO₂. For imaging exogenous H₂S, the cells were separated into four groups. The first group was only incubated with CX-N (10 μ M) for 30 min at 37 °C. The second to fifth groups were pretreated with H₂S (10, 20 and 30 μ M, respectively) for 30 min at 37 °C, and then incubated with CX-N (10 μ M) for 30 min. To image endogenous H₂S, one group of cells were treated with Cys (200 μ M) for 1 h at 37 °C, followed by incubation with CX-N (10 μ M) for 30 min. another group of cells with 1 mM DL-propargylglycine (PAG) for 1 h and then 200 μ M Cys for another 1 h at 37 °C before incubation with CX-N (10 μ M) for 30 min. To image H₂S level in inflammatory cells, the cells were pretreated with LPS (1.0 μ g/mL) for 0 h, 3 h, 6 h, 12 h and then incubated with CX-N (10 μ M) for 30 min at 37 °C. All the cells were washed three times with PBS buffer solution (10 mM, pH 7.4) before imaging. Cell selection and calculation of the mean fluorescence intensity were done using ImageJ.

Imaging H₂S in zebrafish. Zebrafish were divided into four groups. The first group was

treated with CX-N (10 μ M) for 30 min at 37 °C. The second group was pretreated with H₂S (50 μ M) for 30 min at 37 °C before incubation with CX-N (10 μ M) for 30 min. The third group was pretreated with Cys (200 μ M) for 1 h at 37 °C before incubation with CX-N (10 μ M) for 30 min. The fourth group was pretreated with 1 mM DL-propargylglycine (PAG) for 1 h and then 200 μ M Cys for another 1 h at 37 °C before incubation with CX-N (10 μ M) for 30 min. All zebrafish were washed three times with embryo media before imaging. The mean fluorescence intensity was calculated using ImageJ.

Imaging H₂S in mice. For imaging exogenous H₂S in the normal mice, the left and right sides of the back of mice were subcutaneously injected with CX-N (100 μ M) at the same time. Then, H₂S (100 μ M) was injected into the same area on the right side. For imaging H₂S in inflammatory mice, the mice were subcutaneously injected with LPS (2.0 mg/mL) for 12 h in the abdominal cavity to induce an inflammation model. Then, the inflammation areas were injected with CX-N (100 μ M). For imaging H₂S in the tumor-bearing mice, the mice were injected with cancer cells in the armpit to establish tumor model. Then the mice was intratumorally injected with CX-N (100 μ M). The mice were anesthetized with isoflurane and remained anesthetized throughout the image period. All experiments were carried out in accordance with "Regulations of Hunan province on the administration of experimental animals".

2. Synthesis of probe CX-N.

Scheme S1. Synthesis of probe CX-N.

CX-OH was synthesized according to our reported method (Chem. Commun. 2021. 57, 13768-13771). CX-N was synthesized through a route described in Scheme 2. CX-OH (94 mg, 0.20 mmol), 4-chloro-7-nitrobenzofurazan (40 mg, 0.20 mmol) and triethylamine (Et₃N, 0.2 mL) were dissolved in DMF (5 mL). After the solution was stirred at room temperature for 6 h, the solvent was concentrated. The product was further purified by silica gel column chromatography (CH₂Cl₂) to obtain a red solid. Yield: 75 mg (60%). ¹H NMR (400 MHz, CDCl₃, Fig. S1) δ 8.50 (d, J = 11.1 Hz, 2H), 8.21 (d, J = 15.1 Hz, 1H), 7.57 (d, J = 15.4 Hz, 1H), 7.39 (d, J = 9.1 Hz, 1H), 7.15 (d, J = 8.1 Hz, 1H), 7.02 (s, 1H), 6.88-6.85 (m, 1H), 6.76 (d, J = 8.3 Hz, 1H), 6.61-6.58 (m, 1H), 6.44 (d, J = 13.3 Hz, 2H), 3.47-3.42 (m, 4H), 2.56 (t, J = 5.0 Hz, 4H), 1.84-1.78 (m, 2H), 1.24 (t, J = 3.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, Fig. S2) δ 186.2, 161.0, 158.5, 154.1, 153.3, 152.8, 151.4, 148.3, 145.2, 144.2, 137.7, 133.3, 131.6, 127.4, 122.4, 121.7, 121.1, 117.5, 115.1, 112.9, 109.8, 109.0, 108.7, 107.8, 96.6, 45.1, 30.1, 25.3, 20.7, 12.5. HRMS (ESI) m/z calcd for C₃₅H₂₈N₄O₈ [M + Na]⁺: 655.1799, found 655.1810 (Fig. S3).

Fig. S1. ¹H NMR spectra of CX-N in CDCl₃.

Fig. S2. ¹³C NMR spectra of CX-N in CDCl₃.

Fig. S3. HRMS spectra of CX-N.

3. Spectral data.

Fig. S4. Time-dependent fluorescence intensity of CX-N (10 μ M) upon the addition of H₂S (0, 10, 20, 30 μ M) in PBS buffer solution.

Fig. S5. Effect of pH on the fluorescence intensity of CX-N (10 μ M) before and after the reaction with H₂S (30 μ M).

Fig. S6. Time-dependent fluorescence intensity of probe CX-N (10 μ M) upon addition of H₂S (30 μ M) and biothiols (1 mM) in PBS buffer solution.

Fig. S7. Time-dependent fluorescence intensity of CX-N (10 μ M) before and after the reaction with H₂S (30 μ M) during 72 h.

4. Response mechanism.

Fig. S8. HPLC chromatograms of CX-N, CX-N reacted with H_2S , and CX-OH. HPLC mobile phase: methanol/ $H_2O = 90/10$ (V/V).

Fig. S9. HRMS spectra of CX-N with H_2S .

5. Biological assays.

Fig. S10. CCK-8 assay for estimating cells viability (%) of HeLa cells treated with various concentrations of CX-N (0-30 μ M) after 24 h incubation.

Fig. S11. Fluorescence imaging of endogenous H₂S in HeLa cells. The cells were incubated with Cys (200 μ M) and then incubated with CX-N (10 μ M) for 0-30 min. $\lambda_{ex} = 560$ nm, $\lambda_{em} = 650-750$ nm; Scale bar:10 μ m.

Fig. S12. (A) Fluorescence imaging of exogenous H₂S in normal mice. The left and right sides of the back of mice were subcutaneously injected with CX-N (100 μ M) at the same time. Then H₂S (100 μ M) was injected into the same area on the right side. (B) Relative pixel intensity. $\lambda_{ex} = 560$ nm, $\lambda_{em} = 650-750$ nm.