Supplementary Information

EXPERIMENTAL SECYION

Materials and Measurements

All organic solvents were obtained from Beijing Chemical Works. All chemicals were purchased from the commercial sources (Sigma-Aldrich, Arcos and Alfa-Aesar). Six microorganisms (Amp^r *E. coli*, *P. aeruginosa*, *S. aureus*, *B. licheniformis*, *C. albicans*, *S. cerevisiae*) were selected as representative strains, all of which were purchased from China General Microbiological Culture Collection Center. $1 \times PBS$ (pH = 7.4) was used throughout the research. Fluorescence spectra were measured on a Hitachi F-4500 fluorometer equipped with a xenon lamp excitation source. Photographs of bright-field and fluorescence-field were taken with a fluorescence microscope (Ti2-U, Nikon, Japan). Fluorescence intensities of TPEs before and after adding microorganisms were recorded on a microplate reader (Varioskan Flash) using black 96-well plates.

Preparation of TPE Solution

TTAPE¹, Z-TPE-9 and E-TPE-9² (TPEs) was synthesized as described in the previous literature. TPEs with aggregation-induced luminescence properties were prepared into stock solution with a concentration of 1 mM, which was stored in a refrigerator at 4 °C to avoid light, and diluted to the corresponding concentration with 1 × PBS for experiments.

Preparation of Microbial Solutions

A monoclonal colony was selected from the cultured plate and placed in a centrifuge tube containing 10 mL liquid medium. For Amp^r *E. coli*, an additional 10 µL was added containing 50 µg·mL⁻¹ ampicillin. LB medium for Gram-negative bacteria (Amp^r *E. coli* and *P. aeruginosa*), NB medium for gram-positive bacteria (*S. aureus* and B. licheniformis), and YPD medium for fungi (*C. albicans* and *S. cerevisiae*). Subsequently, constant temperature shakers were used for subculture. (For bacteria, it should be shaken at 37 °C for 8-12 h, while for fungi, it should be shaken at 30 °C for 8 ~ 12 h). The microorganisms were collected by centrifugation at 7100 rpm for 3 min, washed twice with 1 × PBS, and then resuspended in 1 × PBS. The bacterial solution was diluted so that its optical density at 600 nm was 1.0 (OD₆₀₀=1.0).

Fluorescence Spectrum Measurements

Different volumes of TPE stock solution were added to 100 μ L bacterial solution (OD₆₀₀=1.0), then the total volume was supplemented to 500 μ L with 1 × PBS, and the final concentrations of TPEs were 5, 10, 25, 50, 75 and 100 μ M, respectively. Incubated at the appropriate temperature (37 °C for bacteria and 30 °C for fungi) for 30 min. The control group was a TPE dilution without the addition of bacterial solution and at the same concentration. The fluorescence spectra of the solutions were then tested under 330 nm excitation by Hitachi F-4500 fluorometer equipped with a xenon lamp excitation source.

Fluorescence Imaging Measurements

TPEs were first added to the microbial suspension (final concentration was 5 μ M) and

the samples were incubated for 30 min. Microbiological suspensions were centrifuged (10000 rpm, 10 min) to remove the supernatant and then added 10 μ L sterile 1 × PBS (10 mM, pH = 7.4) to mix evenly. Dripped 5 μ L suspended liquid to the slide and slowly covered the coverslips, which was placed under a fluorescence microscope for observation. Fluorescence imaging images of microorganisms were captured and collected using a Nikon Ti2-U inverted fluorescence microscope.

Experimental Procedure for Pathogen Identification

Mixed different volumes of TPE reserve solution with 100 µL of bacterial solution $(OD_{600}=1.0)$, then added the 1 × PBS with the final volume of 500 µL. Incubated at the appropriate temperature (37 °C for bacteria and 30 °C for fungi) for 30 min, then transferred to the black 96-well plate. All the fluorescence intensities were recorded on a microplate reader with $\lambda_{ex}=330$ nm and $\lambda_{em}=461$ nm. The control group was TPE solution without microbes under the same treatment conditions. The relative fluorescence intensity of TPEs before and after incubation with microorganisms, namely (I-I₀)/I₀, were calculated by Microsoft Excel, where I is the fluorescence intensity of TPE after adding microbes, and I₀ was the fluorescence intensity of TPE alone. The obtained relative fluorescence intensity (I-I₀)/I₀ could be converted into a 2D canonical score plot by IBM SPSS Statistics 22 software, showing the identification results of many kinds of microorganisms.

Concentration of TPEs	Samples	Zeta potentials (ζ, mV)
	Amp ^r E. coli	-42.0 ± 1.0
5 μΜ	Amp ^r E. coli + TTAPE	-42.7 ± 0.8
	Amp ^r E. coli + Z-TPE-9	-45.5 ± 1.1
	Amp ^r E. coli + E-TPE-9	-40.9 ± 0.3
10 μΜ	Amp ^r E. coli + TTAPE	-39.6 ± 1.1
	Amp ^r E. coli + Z-TPE-9	-40.1 ± 0.3
	Amp ^r E. coli + E-TPE-9	-41.0 ± 0.2
	S. aureus	-32.5 ± 1.4
5 μΜ	S. aureus + TTAPE	-31.8 ± 3.2
	<i>S. aureus</i> + Z-TPE-9	$\textbf{-24.2}\pm0.0$
	<i>S. aureus</i> + E-TPE-9	-28.7 ± 1.0
10 µM	S. aureus + TTAPE	-27.9 ± 0.1
	<i>S. aureus</i> + Z-TPE-9	-26.9 ± 1.7
	<i>S. aureus</i> + E-TPE-9	-26.4 ± 2.2
	C. albicans	-23.5 ± 1.4
5 μΜ	C. albicans + TTAPE	-22.4 ± 1.2
	C. albicans + Z-TPE-9	-22.7 ± 0.5
	<i>C. albicans</i> + E-TPE-9	-22.9 ± 0.1
10 µM	C. albicans + TTAPE	-20.0 ± 0.5
	C. albicans + Z-TPE-9	-21.5 ± 0.5
	<i>C. albicans</i> + E-TPE-9	-21.9 ± 0.9

Table S1. Table of zeta potential changes of microorganisms before and after bindingwith different concentrations of TPEs (5 μ M, 10 μ M)

Figure S1. Photographs of the three TPE materials and different microorganisms before and after incubation under UV lamp (TPE material concentration was 50 μ M).

Figure S2. Histogram of fluorescence ratios of 5 μ M and 10 μ M (a) TTAPE, (b) Z-TPE-9 and (c) E-TPE-9 incubated with Amp^r *E. coli*, *P. aeruginosa*, *S. aureus*, *B. licheniformis*, *C. albicans* and *S. cerevisiae*, respectively. (Where I is the fluorescence intensity value of TPE materials combined with microorganisms at 461 nm, I₀ is the fluorescence intensity value of TPE itself at the same concentration. λ_{ex} =330 nm, λ_{em} =461 nm.)

Figure S3. Fluorescence response of TPE after the addition of microbes $(1 \sim 1 \times 10^5 \text{ CFU/mL})$. Each value was the average of eight independent measurements, error bar shows the standard deviation of these measurements. λ_{ex} =330 nm, λ_{em} =461 nm. I₀ and I are the fluorescence intensity of TPE in the absence and presence of microbes.

Figure S4. Fluorescence response patterns of different concentrations of *S. aureus* by (a)5 μ M or (b) 10 μ M TTAPE, Z-TPE-9 and E-TPE-9, respectively.

REFERENCES

 Hong, Y. N.; Haussler, M.; Lam, J. W. Y.; Li, Z.; Sin, K. K.; Dong, Y. Q.; Tong, H.; Liu, J. Z.; Qin, A. J.; Renneberg, R.; Tang, B. Z., Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. *Chemistry-a European Journal* 2008, *14* (21), 6428-6437.
Xu, L.; Wei, D. Q.; Zhu, Z. C.; Yang, C. L., Nucleic acid probe and stain based on water-soluble tetraphenylethene derivatives modified with different kinds of amino binding groups: The role of

hydrogen bond. Sensors and Actuators B-Chemical 2016, 234, 521-526.