Mussel-inspired hydrogel for fast fabrication of flexible SERS tape

for point-of-care testing of β-blockers

Qinghao Cao, ^a Chao Chen, ^a Jun Huang, ^b Dantong Shen, ^{c, *} Haolin Chen, ^d Huiqing Zhong, ^a Zhiming Liu ^{a, *} and Zhouyi Guo ^{a, *}

^a Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China

^b Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China

^c The department of medical service for special forces, General Hospital of Southern Theater Command, Guangzhou, 510010, China.

^d Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China

* Corresponding to: Dr. Dantong Shen, Dr. Zhiming Liu and Prof. Zhouyi Guo,

E-mail: shendantong@hotmail.com (Dr. D.T. Shen), liuzm021@126.com (Dr. Z.M. Liu) and ann@scnu.edu.cn (Prof. Z.Y. Guo)

Samples	AA	Al(NO ₃) ₃	CHI	GA	BIS	KPS	Deionized
	(mL)	•9H ₂ O	(g)	(g)	(mg)	(g)	water
		(g)					(g)
Р	3	0	0	0	10	0.08	10
P-0.3C	3	0	0.3	0	10	0.08	10
P-0.08A1	3	0.08	0	0	10	0.08	10
P-0.3C-0.06GA	3	0	0.3	0.06	10	0.08	10
P-0.3C-0.06GA-0.02Al	3	0.02	0.3	0.06	10	0.08	10
P-0.3C-0.06GA-0.04Al	3	0.04	0.3	0.06	10	0.08	10
P-0.3C-0.06GA-0.06Al	3	0.06	0.3	0.06	10	0.08	10
P-0.3C-0.06GA-0.08A1	3	0.08	0.3	0.06	10	0.08	10
P-0.3C-0.06GA-0.10Al	3	0.10	0.3	0.06	10	0.08	10
P-0.08Al-0.06GA	3	0.08	0	0.06	10	0.08	10
P-0.15C-0.06GA-0.08Al	3	0.08	0.15	0.06	10	0.08	10
P-0.45C-0.06GA-0.08Al	3	0.08	0.45	0.06	10	0.08	10
P-0.3C-0.08Al	3	0.08	0.3	0	10	0.08	10
P-0.3C-0.01GA-0.08Al	3	0.08	0.3	0.01	10	0.08	10
P-0.3C-0.02GA-0.08A1	3	0.08	0.3	0.02	10	0.08	10
P-0.3C-0.04GA-0.08A1	3	0.08	0.3	0.04	10	0.08	10
P-0.3C-0.06GA-0.086Fe*	3	0.086	0.3	0.08	10	0.08	10
P-0.3C-0.06GA-0.051Cu*	3	0.055	0.3	0.08	10	0.08	10
P-0.3C-0.06GA-0.085Cr*	3	0.063	0.3	0.08	10	0.08	10

Table S1. Composition of the hydrogels

*As for P-0.3C-0.06GA-0.086Fe, P-0.3C-0.06GA-0.055Cu and P-0.3C-0.06GA-0.063Cr, 0.086 g of $Fe(NO_3)_3$ ·9H₂O, 0.055 g of Cu(NO₃)₂·3H₂O or 0.063 g of Cr(NO₃)₃·9H₂O was added instead of Al(NO₃)₃·9H₂O. All the samples listed here were synthesized following the same methodology mentioned in the "**Preparation of hydrogel**" session.

	BSE	MET		ESE		ACE		
363	$\delta(\text{O-CH}_2)$	357	$\delta(OH) + \delta(CH) + \delta(CH_2) + \delta(CH_3)$	336	δ (O-CH ₂)			
485	$ ho(\mathrm{CH}_2)$			486	$ ho(\mathrm{CH}_2)$	485	$ ho(\mathrm{CH}_2)$	
				575	τ (CCC ring)+ δ (OC-NH)	571	τ (CCC ring)+ δ (OC-NH)	
644	δ (CCC ring)+ ρ (CH ₂)	643	in-plane ring deformation	644	$\delta(\text{CCC ring}) + \rho(\text{CH}_2)$	644	$\delta(\text{CCC ring})$	
749	$\delta(\text{NH}) + \delta(\text{CC ring})$	749	$\delta(\text{CCC ring}) + \rho(\text{CH}_2)$	748	δ (CCC ring)+ δ (NH)	750	$\delta(\text{CCC ring}) + \delta(\text{NH})$	
821	ω (CH)+ring breathing	821	γ(CH ring)	816	γ (CH ring)	818	γ(CH ring)	
889	<i>v</i> (CO)+ <i>v</i> (NH)	890	ring breathing	890	<i>v</i> (CO)+ <i>v</i> (NH)	890	<i>v</i> (CO)+ <i>v</i> (NH)	
910	$v(CO)+\rho(CH_2)$	911	$v_{\rm as}({\rm CCN})+\delta({\rm CH}_2)$	911	$\nu(CO)+\rho(CH_2)$	912	$\nu(CO)+\rho(CH_2)$	
953	$\delta(CH_3) + \delta(CH_2)$	952	$\delta(CH_3)+\delta(CH_2)$	955	$\delta(CH ring) + \delta(CH_2)$	952	$\delta(CH ring) + \delta(CH_2)$	
999	$\nu(CO) + \rho(CH_2)$	998	δ (CH ring)+in plane ring deformation	998	$\nu(CO)+\rho(CH_2)$	999	$\nu(CO) + \rho(CH_2)$	
		1063	v(OC)					
1073	v(OC)	1075	ν (CH-CH)+ δ (CH ₃)+ δ (CH ₂)	1077	<i>v</i> (OC)	1075	ν (CCH)+ δ (CCH)	
1102	$\nu(CC)+\delta(CCH)$	1103	$v_{\rm as}({ m OCC})$	1102	v(CC)	1103	v(CC)	
1115	δ (CH ring)	1116	$\rho(CH_2)+\rho(CH_3)+\rho(NH)$	1119	$\rho(CH_2)+\rho(CH_3)+\rho(NH)$	1118	$\delta(CH ring)$	
1176	$v(CC)+\delta(CH ring)$	1176	$ ho(\mathrm{CH}_2)+ ho(\mathrm{CH}_3)$			1178	$v(OCC)+\delta(CH ring)$	
		1208	$\delta(OH) + \delta(CH)$	1203	$\delta(CC ring)$	1207	$\delta(\text{CC ring})$	
1217	$v_{\rm as}({\rm CC\ ring})+\tau({\rm CH}_2)$	1218	$v_{\rm as}(\rm CC \ ring) + \tau(\rm CH_2)$	1215	$v_{\rm as}({\rm OC})$	1217	$v_{\rm as}({\rm OC})$	
1244	$\tau(CH_2)+\rho(CH_2)$	1244	$v_{\rm as}({\rm OCC})+\delta({\rm CC})$	1244	$\tau(CH_2)+\rho(CH_2)$	1244	$\tau(CH_2)+\rho(CH_2)$	
1256	$\tau(CH_2)+\rho(CH_2)$	1257	$ ho({ m CH_2})$	1252	$v_{as}(OCC) + \delta(CH)$	1257	$v_{\rm as}({ m OCC}) + \delta({ m CH})$	
1286	$\delta(CH_2) + \delta(OH)$	1285	$\delta(CH_2)+\delta(OH)$	1270	$\delta(CH_2) + \delta(OH)$	1285	$\delta(CH_2) + \delta(OH)$	
1323	$\delta(\text{NH}) + \delta(\text{CH})$	1324	$\delta(\text{NH}) + \delta(\text{CH})$	1315	$\delta(\text{NH}) + \delta(\text{CH})$	1323	$\delta(\text{NH}) + \delta(\text{CH})$	
1336	$\omega(CH_2)+\delta(CH)$	1335	$\omega(CH_2)+\delta(CH)$			1337	$\omega(CH_2) + \delta(CH)$	
1357	$\omega(CH_2)+\tau(CH_2)$	1357	$\omega(CH_2)+\tau(CH_2)/\delta(CH_3)$	1355	$\omega(CH_2)+\tau(CH_2)$	1357	$\omega(CH_2) + \tau(CH_2)$	
1458	$\delta(\mathrm{CH}_2)$	1455	$\delta_{ m as}(m CH_3)$	1458	$\delta_{\mathrm{as}}(\mathrm{CH}_3)$	1458	$\delta_{ m as}(m CH_3)$	
1570	$v_{\rm as}(\rm CC\ ring) + \delta(\rm CH\ ring)$	1570	$v_{\rm as}(\rm CC\ ring) + \delta(\rm CH\ ring)$	1569	$v_{\rm as}(\rm CC \ ring) + \delta(\rm CH \ ring)$	1570	$v_{\rm as}(\rm CC\ ring) + \delta(\rm CH\ ring)$	
1597	1597	1597	v(CC ring) V(CU ring)			1597	$\psi(CC, \min \alpha) + \psi(CU, \min \alpha)$	
1615 v(CC ring)+0(CH ri	$v(UU \operatorname{ring}) + o(UH \operatorname{ring})$	1615	v(CC ring)+o(CH ring)	1615	$v(CC ring) + \delta(CH ring)$	1615	v(CC ring)+o(CH ring)	

Table S2. Experimental vibrational band wavenumbers of BSE, MET, ESE and ACE.

Fig. S1. (a) UV-vis spectrum of the solution of synthesized Seed A, B, C, D and AgNPs. (b) TEM image of AgNPs.

Fig. S2. Large amount of CHI (from left to right: 0.45, 0.5, 0.6g) failed to reach gelation. Gel with 0.6 g CHI was too soft to reach gelation.

Fig. S3. The impact of different Al^{3+} (from left to right: 0, 0.02, 0.04, 0.10g) contents on gelation of the GA-containing samples.

Fig. S4. The impact of different GA (from left to right: 0, 0.01, 0.02, 0.04, 0.06, 0.08g) contents on gelation.

Fig. S5. The tensile curves of (a) P-0.3C-0.06GA-(0, 0.02, 0.04, 0.06, 0.08, 0.10)Al, (b) P-0.3C-(0, 0.01, 0.02, 0.04, 0.06, 0.08)GA-0.08Al and (c) P-(0, 0.15, 0.3, 0.45)C-0.06GA-0.08Al.

Fig. S6. Al^{3+} in P-0.3C-0.06GA-0.08Al was replaced by equal molar amount of Fe³⁺, Cu²⁺ and Cr³⁺ (from left to right), making P-0.3C-0.06GA-0.086Fe, P-0.3C-0.06GA-0.085Cr bydrogels. Only the gelation of P-0.3C-0.06GA-0.085Cr succeeded.

Fig. S7. Multiple hydrogen bonds and electrostatic interactions in P-0.3C-0.06GA-0.08A1 hydrogel.

Fig. S8. Adhesiveness of P-0.3C-0.06GA-0.08A1 to various surfaces including: liver, lung, spleen, heart, kidney, skin, glass, PE and iron.

Fig. S9. SERS spectra of (a) BSE, (b) MET, (c) ACE and (d) ESE with a concentration of 10^{-3} - 10^{-9} M. 5 µL of BSE, MET, ACE or ESE simulated urine solution was dropped onto the substrate for each sample. Raman spectra were collected by a portable Raman spectrometer. Exposure time was 1500 ms, and laser wavelength was 785 nm.

Fig. S10. SERS spectra of (a) BSE, (b) MET, (c) ACE and (d) ESE with a concentration of 10^{-5} M. 5 µL of 10^{-5} M BSE, MET, ACE or ESE simulated urine solution was dropped onto the substrate for each sample. Raman spectra were collected by a portable Raman spectrometer. Exposure time was 1500 ms, and laser wavelength was 785 nm.

Fig. S11. (a) 2D-PCA and (b) 3D-PCA of four β -blockers simulated urine solution samples are shown as scatter plots. Green dots represent BSE, blue dots represent MET, black dots represent ACE and pink dots represent ESE.