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Fig. S1. The molds of dual PDMS layers are manufactured by SLA 3D printer.



Fig. S2. The construction of Casade Fermat Spiral Microfluidic Chip. Assembly drawing of the 

fabricated push valve, cured dual PDMS layer.



Fig. S3. The cured dual PDMS layers (the Microchannel layer and base layer).



Fig. S4. The two-dimensional (2D) drawing of push valve on the left (A) and right (B) sides of the 

microfluidic chip. It showed the push valve on the left side of the microfluidic chip (A). The push 

valve had a total length of 13 mm and was divided into two parts: the valve head and the valve body. 

The valve head is 3 mm long and 5 mm wide, and there was a 0.4 × 0.4 mm protrusion on the valve 



head for positioning when installing push valves. The valve body was 10 mm long and 3.2 mm in 

diameter, and there were two sets of through holes on the valve body for realizing the flow of liquid. 

The upper hole was a T-shaped through hole of 0.4 × 0.4 mm, and the lower hole was a straight 

through hole of 0.4 × 0.4 mm. To ensure that the cancer cells do not block when entering the 

microchannel, the microchannel connected to the cancer cell reservoir in the upper side hole was 

designed as a 0.6 × 0.4 mm through-hole to ensure smooth sample feeding (B), and the rest of the 

hole design was consistent with Fig.S4 A.



Fig. S5. The particle size statistical analysis of AuNPs



Table S1. The local section and maximum errors of CFSMM.

Local section of

CFSMM

Design size

(μm)

Actual size

(μm)

Maximum 

error

(μm)

Maximum 

error

Percentage (%)

a 400 wide 397.85  408.35

390.27  404.63

9.73 2.43

b 400 wide 

400 deep

395.74

397.68

4.26 1.07

c 400 wide 391.17 8.83 2.21

d 400 wide 388.61 11.39 2.85

e 600 wide 607.72 7.72 1.29

f 600 wide 

400 deep

611.92

390.81

11.92 1.99

The data in Table S1 are originally from Figure 1B.



Table S2. Comparison of CFSMMC detection capabilities.

Method Cell types Limit of Detection References

Colorimetric SKBR-3 cells 100 cells/mL [1]

Colorimetric MCF-7 cells 125 cells/mL [2]

Colorimetric CCRF-CEM cells 40 cells/mL [3]

Electrochemical
A-549 lung cancer 

cells
25 cell/mL [4]

Electrochemical HeLa cells 273 cell/mL [5]

microcantilever HepG2 cells 300 cell/mL [6]

Electrochemical MCF-7 cells 19 cells/mL [7]

Fluorescence CCRF-CEM cells 44 cells/mL [8]

Fluorescence MCF-7 cells 17 cells/mL This work
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