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1. List of ternary mixtures

Table S1 Ternary mixture sets

Ternary Mixture Component

CL
CytoC
DNA
Erg

2 DNA
Prot
LPC

3 OPC
PC
PE

4 Pl
PA
PS

5 SPH
Prot
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2. AslLS performance at different asymmetry parameters

As discussed in Section 3.1 in the main text, the performance of the AsLS is highly dependent on the user
choice of asymmetry parameter (the p value) to provide an acceptable result, and in our simulations we
found empirically that a p value of 0.001 provides a good fit for the considered mixture datasets. We
show in Fig. S1, RMSEP at different asymmetry parameters, and in Fig. S2, examples of spectral fits at
different p values. Those results clearly indicate that it’s a visual judgement call which p value is
considered “best”, particularly as different components show different trends versus asymmetry
parameter. 0.001 represents the best compromise. However, selecting this parameter required ground
truth knowledge of the true concentrations, a condition which is typically not met.
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Fig. S1 The RMSEP versus asymmetry parameter for various chemical components in ternary mixtures.
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Fig. S2 Examples of spectra fits at the different p values using two representative sets of simulated mixtures.

S-2



3. Sensitivity of CNN to hyperparameter selection
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Fig. S3 Sensitivity of the model performance to hyperparameter selection. (A) The effect of different learning rates. (B) The effect of

epoch number. (C) The effect of batch size. (D) The effect of dropout regularization.

CNN models typically have a large number of hyperparameters that are often set at default values or
adjusted to optimize the learning process. As an advantage of CNN observed in the main text is less
reliance on expert users, we conducted a sensitivity analysis of the CNN model performance to changes
in the configuration of the hyperparameters settings using four representative spectral mixture sets in
the complete spectral model scenario, namely the learning rate, epoch, dropout and batch size.

To investigate each hyperparamter’s effect we hold all other hyperparameters fixed as baseline
model setting and vary the hyperparameter of interest. For the setting conditions of each
hyperparameter we evaluated the model’s performance in terms of the RMSEP. We show in Fig. S3 the
results of the sensivity analysis. As shown in Fig. S3, the CNN has minimal dependence on
hyperparameter selection, highlighting that a “vanilla” architecture trained using default
hyperparameters produces state-of-the-art results without requiring user tuning.

4. Prediction results in simulated underdetermined models

In the main text Section 3.2, we showed in Fig. 5 the prediction performance using a representative
simulated ternary mixture of LPC, OPC and PC, where PC was deleted. In Figs. S4 and S5, the
performance on the complete group of simulated mixtures (summarized in Table 2) is presented.
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Fig. S4 Comparison of the prediction performance by the different methods in incomplete spectral models
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Fig. S5 Comparison of the prediction performance by the different methods in incomplete spectral models.
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5. Full comparison of liposome data between CNN and AsLS
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Fig. S6 Comparison of prediction results in experimental liposome data. (A) CNN and AsLS agreement in full spectral model for
Cholesterol. (B) Comparison of prediction results by CNN and AsLS using an incomplete model with deletion of PC. (C) Comparison of
CNN and AsLS prediction results using an incomplete model with deletion of DPPC. (D) CNN and AsLS agreement in full spectral model for
PC. (E) Comparison of prediction results by CNN and AsLS using an incomplete model with deletion of Cholesterol. (F) Comparison of
prediction results by CNN and AsLS using an incomplete model with deletion of DPPC. (G) CNN and AsLS agreement in full spectral model
for DPPC. (H) Comparison of prediction results by CNN and AsLS using an incomplete model with deletion of Cholesterol. (I) Comparison

of prediction results by CNN and AsLS using an incomplete model with deletion of PC.

6. Prediction results using data after preprocessing

We note in the Conclusion Section in the main text that we explored using CNN to predict concentrations
using data after pre-processing. In Figs. S7 and S8, the results of the CNN evaluation using raw and
pre-processed spectra in complete spectral models and incomplete spectra models for a ternary mixture
is presented.
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Fig. S7 Performance of CNN regression on raw spectra (top) and pre-processed spectra (bottom) for a ternary

mixture and complete spectral model.
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Fig. S8 Performance of CNN regression on raw spectra (top) and pre-processed spectra (bottom) for a ternary

PC, LPC, OPC mixture where PC was not included in the spectral model.
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7. CNN evaluation in complete spectral models using raw and pre-processed
spectra

Table S2 CNN evaluation in complete spectral models using raw and pre-processed spectra

Pure component CNN (raw) CNN (pre-processed)
CL 0.0061 0.0064
CytoC 0.0063 0.0060
DNA 0.0056 0.0059
Prot 0.0132 0.0148
LPC 0.0081 0.0093
OPC 0.0105 0.0093
PC 0.0237 0.0225
PE 0.0225 0.0219
Pl 0.0219 0.0189
PA 0.0222 0.0252
PS 0.0211 0.0201
SPH 0.0183 0.0184
Average 0.0131 0.0149

8. CNN evaluation in incomplete spectral models using raw and pre-processed
spectra

Table S3 CNN evaluation in incomplete spectral models using raw and pre-processed spectra?

Mixture Pure component CNN (raw spectra) CNN (preprocessed spectra)

CL 0.0792 0.0635

1 CytoC 0.0493 0.0706
DNA x X

LPC 0.0116 0.0494

2 OPC 0.2982 0.3738
PC x X

PE 0.1985 0.1835

3 Pl 0.0811 0.0970
PA x X

PS 0.0925 0.0783

4 SPH 0.1765 0.2423
Prot X X

Average 0.1233 0.1448

altalicized text indicates missing components
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