Electronic Supplementary Information

A rapid and simple electrochemical detection of the free drug concentration in human serum using boron-doped diamond electrodes

Hideto Moriyama^{1‡}, Genki Ogata^{1‡}, Haruma Nashimoto², Seishiro Sawamura³, Yoshiaki Furukawa¹, Hiroshi Hibino³, Hiroyuki Kusuhara², Yasuaki Einaga^{1*}

¹Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan

²Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

³Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

[‡]Contributed equally ^{*}Corresponding author E-mail: <u>einaga@chem.keio.ac.jp</u>

Contents

Figure S1	Raman spectrum of BDD.
Figure S2	SEM image of BDD electrode.
Figure S3	Cyclic voltammogram of PB using BDD.
Figure S4	Illustrated outline of 3 electrode systems.
Figure S5	LC/MS/MS chromatograms of doxorubicin.
Figure S6	Calibration curve of doxorubicin using LC/MS/MS.
Figure S7	Linear sweep voltammograms of doxorubicin in 0.1 M PB (pH 7.4) with
	nitrogen bubbling using BDD and GC.
Figure S8	Linear sweep voltammogram of doxorubicin at three different pH.
Figure S9	Calibration curves of doxorubicin using LSV
	(for the unbound concentration measurements).
Table S1	Optimised parameters for mass spectrometric analysis.
Table S2	Average current (μ A), SD (μ A) and CV (%) values for each calibration
	measurement using BDD-A and B
Table S3	Comparison of electrochemical measurement results of doxorubicin with
	various electrodes

Figure S2. SEM image of BDD electrode. (A)BDD-A, (B)BDD-B

Figure S3. Cyclic voltammogram of 0.1 M PB (pH 7.4) using BDD. Start potential: 0 V *vs.* Ag/AgCl; Scan range: -1.0 V to 1.5 V; Scan rate: 100 mV s⁻¹

Figure S4. Illustrated outline of 3 electrode systems. A silicone O-ring is sandwiched between the cell and the BDD).

Figure S5. LC/MS/MS chromatograms of doxorubicin. Concentration range: 0, 5, 10, 20, 40, 80 nM, QC: 5, 20, 80 nM, m/z=397.05.

Figure S6. Calibration curve of doxorubicin using LC/MS/MS. LOD=0.188 nM (LOD = 3.3 sd of background area / slope), mean ± s.e.m., n = 5.

Fig. S7. Linear sweep voltammograms of doxorubicin in 0.1 M PB (pH 7.4) by BDD and GC with the 1 min N2 bubbling. (A) BDD, in the absence (black line) and the presence of 50 nM doxorubicin (DOX, magenta line). (B) GC, in the absence (black line) and the presence of 50 nM doxorubicin (DOX, blue line).

Figure S8. Linear sweep voltammogram of doxorubicin at three different pH.

(A) pH 5.1 (10, 20, 50, 100 nM in 0.1 M acetate buffer, n = 3); (B) pH 6.0 (5, 10, 20, 30, 40, 50, 75, 100 nM doxorubicin in 0.1 M PB, n = 5); (C) pH 7.4 (1, 2.5, 5, 10, 20, 40, 75, 100 nM doxorubicin in 0.1 M PB, n = 3), Scan rate: 100 mV s⁻¹.

Figure S9. Calibration curves of doxorubicin in 0.1 M PB (pH 6.0) at each electrode using LSV. Measurements were performed just before the unbound concentration measurements. (A) BDD-A, (B) BDD-B, mean \pm s.e.m., n = 3.

Parameter	Doxorubicin
Ionization method	ESI (positive)
Nebulizing gas flow	3 L/min
Heating gas flow	10 L/min
Drying gas flow	10 L/min
Interface temperature	300 °C
DL temperature	250 °C
Block heater temperature	400 °C
CID gas pressure	270 kPa
Interface voltage	+4 kV
Q1 Pre Bias	-26.0 V
Collision energy	–15.0 V
Q3 Pre Bias	–20.0 V

Table S1. Optimised parameters for mass spectrometric analysis.

	BDD-A			BDD-B		
Added (nM)	Average (µA)	SD (µA)	CV (%)	Average (µA)	SD (µA)	CV (%)
5	-9.4	0.47	5.0	-8.1	0.96	11.9
10	-12.5	1.24	9.9	-10.9	0.67	6.1
20	-16.1	0.71	4.4	-16.9	0.41	2.4
30	-20.1	0.68	3.2	_	—	_
50	-28.7	0.38	1.3	-31.7	1.56	4.9

Table S2. Average current (μ A), SD (μ A) and CV (%) values for each calibration measurement using BDD-A and B

 Table S3. Comparison of electrochemical measurement results of doxorubicin with various electrodes

Material for sensing	Technique	Detection range /μM	LOD /nM	Sample	Ref.
AgNPs-CDs-rGO/GCE	DPV	0.01~2.5	2	Human serum	[1]
Nano-TiO ₂ /nafion composite film modified	LSV	0.005~2	1	Plasma	[2]
GCE					
Thin film of poly-arginine modified GCE	DPV	0.069~1.08	69	Whole plasma	[3]
		0.1~3.45	103	Whole blood	
MWCNT/CoFe ₂ O ₄ nanoparticles modified CPE	DPV	5×10 ⁻⁵ ~1.15	0.01	Human blood serum,	[4]
				urine	
PAMT@AuNPs@rGO/GCE	DPV	3×10 ⁻⁵ ~0.03,	0.009	Blood serum	[5]
		0.03~30			
VMSF/ErGO layer on GCE	DPV	0.001~20	0.77	Human whole blood	[6]
MCS/rGO/GCE	DPV	0.01~10	1.5	Human serum	[7]
AuNRDs/1T-MoS ₂ nanosheets /SPE	AdsDPV	0.01~9.5	2.5	Human blood serum	[8]

L-GSH-MoS ₂ -CYS/GCE	DPV	0.1~78.3,	31	-	[9]
		98.3~1218			
FeV/SCNFs/GCE	CV	0.02~542.5	5.2	Blood serum, human	[10]
				urine	
Graphene quantum dots/GCE	DPV	0.018~3.6	0.016	Human plasma	[11]
Au/N-prGO-CS electrode	DPV	0.01~15	10	Human plasma	[12]
DRN-aptamer-modified electrode	EIS	0.031~0.125	28	-	[13]
PT/β-CD/GQD modified Au electrode	DPV	0.086~3.45	12	Human plasma	[14]
Poly(Azure B)-DNA composite modified GCE	DPV	1×10 ⁻⁴ ~0.1	0.07	Human serum	[15]
BNNS-NiCo ₂ O ₄ /SPE	DPV	0.01~600	9.4	Injection solution,	[16]
				biological specimens	
Fe ₃ O₄@Pt nanoparticles/ MWCNT/CPE	DPV	0.05~70	1	Urine sample	[17]
N-doped carbon nanoonions/ GCE	DPV	2×10 ⁻⁴ ~10	0.06	Serum sample	[18]
NiHCF/Ni-Al-LDH modified gold electrode	DPV	0.01~6.2	1.9	Biological sample,	[19]
				human blood serum	
GCE-AgNPs/poly(chitosan)	DPV	0.103~8.6	103	Human bio-fluids,	[20]
				B16F10 cell lysates	
VMSF/chemically pretreated- GCE	DPV	5×10 ⁻⁴ ~23	0.2	Human whole blood	[21]
rGO/AuNPs/polypyrrole/GCE	DPV	0.02~25000	20	_	[22]
SNPs@MOF/BNSs-Fc/GCE	Ratiometric	0.01~10	2	Human serum	[23]
	3VV V				
BDD	LSV	0.001~0.1	0.14	Human serum	This work

Abbreviations: AgNPs, silver nanoparticles; CDs, carbon dots; rGO, reduced graphene oxide; GCE, glassy carbon electrode; DPV, differential pulse voltammetry; LSV, linear sweep voltammetry; CPE, carbon nanotube paste electrode; MWCNT, multiwalled carbon nanotubes; PAMT, poly(2-amino-5-mercapto-1,3,4-thiadiazole); VMSF, vertically-ordered mesoporous silicananochannel film; ErGO, electrochemically reduced graphene oxide; MCS, mesoporous carbon nanospheres; AuNRDs, gold nanorods; AdsDPV, adsorptive stripping differential pulse voltammetry; SPE, screen-printed electrode; L-GSH, L-glutathione; CYS, cystamine; CV, cyclic voltammetry; SCNFs, sulfur-doped carbon nanofiber; FeV, iron vanadate; Au/N-prGO-CS electrode, chitosan and nitrogen- doped porous reduced graphene oxide onto gold electrode; EIS, electrochemical impedance spectroscopy; DRN- aptamer, daunorubicin-binding aptamer; GQD, graphene quantum dots; PT/ β -CD, poly(taurine- β cyclodextrins); BNNS, bird nest-like nano-structure; MB, methylene blue; NiHCF, nickel hexacyanoferrate; Ni-Al-LDH, Ni-Al layered double hydroxides; SWV, square wave voltammetry; LSV, linear sweep voltammetry. Adapted with permission from Elsevier B.V.: Microchemical Journal (Yang et al. 2022), Copyright 2022.

References

- H. Guo, H. Jin, R. Gui, Z. Wang, J. Xia and F. Zhang, Sensors and Actuators, B: Chemical, 2017, 253, 50–57.
- J. Fei, X. Wen, Y. Zhang, L. Yi, X. Chen and H. Cao, *Microchimica Acta*, 2009, **164**, 85–91.
- 3 J. Soleymani, M. Hasanzadeh, M. Eskandani, M. Khoubnasabjafari, N. Shadjou and A. Jouyban, *Materials Science and Engineering C*, 2017, **77**, 790–802.
- 4 M. Taei, F. Hasanpour, H. Salavati and S. Mohammadian, *Microchimica Acta*, 2016, **183**, 49–56.
- 5 M. H. Ghanbari, F. Shahdost-Fard, H. Salehzadeh, M. R. Ganjali, M. Iman, M. Rahimi-Nasrabadi and F. Ahmadi, *Microchimica Acta*, 2019, **186**, 641.
- F. Yan, J. Chen, Q. Jin, H. Zhou, A. Sailjoi, J. Liu and W. Tang, *Journal of Materials Chemistry C*, 2020,
 8, 7113–7119.
- 7 J. Liu, X. Bo, M. Zhou and L. Guo, *Microchimica Acta*, 2019, **186**, 639.
- 8 E. Er and N. Erk, *Microchimica Acta*, 2020, **187**, 223.
- S. V. Selvi, A. Prasannan, S.-M. Chen, A. Vadivelmurugan, H.-C. Tsai and J.-Y. Lai, *Microchimica Acta*, 2021, 188, 35.
- 10 U. Rajaji, Y. Kumar, S.-M. Chen, M. S. Raghu, & L. Parashuram, F. M. Alzahrani, N. S. Alsaiari and M. Ouladsmane, *Microchimica Acta*, 2021, **188**, 303.
- 11 M. Hasanzadeh, N. Hashemzadeh, N. Shadjou, J. Eivazi-Ziaei, M. Khoubnasabjafari and A. Jouyban, Journal of Molecular Liquids, 2016, **221**, 354–357.
- 12 F. Chekin, V. Myshin, R. Ye, S. Melinte, S. K. Singh, S. Kurungot, R. Boukherroub and S. Szunerits, Analytical and Bioanalytical Chemistry, 2019, **411**, 1509–1516.
- 13 N. Bahner, P. Reich, D. Frense, M. Menger, K. Schieke and D. Beckmann, *Analytical and Bioanalytical Chemistry*, 2018, **410**, 1453–1462.
- 14 P. M. Alizadeh, M. Hasanzadeh, J. Soleymani, J. V. Gharamaleki and A. Jouyban, *Microchemical Journal*, 2019, **145**, 450–455.
- 15 A. Porfireva, V. Vorobev, S. Babkina and G. Evtugyn, *Sensors (Switzerland)*, 2019, **19**, 2085.
- 16 M. Rahimi, A. Bagheri Gh. and S. J. Fatemi, *Journal of Electroanalytical Chemistry*, 2019, **848**, 113333.
- 17 T. Madrakian, K. D. Asl, M. Ahmadi and A. Afkhami, *RSC Advances*, 2016, **6**, 72803–72809.
- 18 M. H. Ghanbari and Z. Norouzi, *Microchemical Journal*, 2020, **157**, 105098.
- 19 L. LÜ, Analytical Sciences, 2020, **36**, 127–133.

- 20 M. Ehsani, J. Soleymani, P. Mohammadalizadeh, M. Hasanzadeh, A. Jouyban, M. Khoubnasabjafari and Y. Vaez-Gharamaleki, *Microchemical Journal*, 2021, **165**, 106101.
- 21 M. Wang, J. Lin, J. Gong, M. Ma, H. Tang, J. Liu and F. Yan, *RSC Advances*, 2021, **11**, 9021–9028.
- 22 M. Behravan, H. Aghaie, M. Giahi and L. Maleknia, *Diamond and Related Materials*, 2021, **117**, 108478.
- 23 M. Yang, Z. Sun, H. Jin and R. Gui, *Microchemical Journal*, 2022, **177**, 107319.